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Abstract: 

Measuring forage mass (FM) in the pasture, prior to grazing, is critical to determining the 

daily allocation of forage in pastoral animal production systems. FM is estimated by 

cutting forage in known areas, using allometric equations, or with the use of remote 

sensors (RS); however, the accuracy and practicality of the different methods for 

estimating FM is variable. The objective was to obtain predictive models using 

environmental and pasture management variables to predict FM. Regression models were 

fitted to estimate FM based on variables of pasture management (PM) or measurements 

obtained by RS, such as reflectance, air temperature, and rainfall. A mixed pasture grazed 

by beef cattle was studied for three years. With 80 % of data, models were built by 

ordinary least squares (OLS) or by machine  learning (ML) algorithms.  The remaining 

20 % of the data was used to validate the models using the coefficient of determination 
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and average bias between estimated and observed values. The base model of study was 

the relationship between pasture height before grazing and FM, this model was fitted 

using OLS; the r2 was 0.43. When models that included PM variables were fitted, the r2 

was 0.45 for OLS and 0.63 for ML. When fitting models with PM and RS variables, the 

r2 was 0.71 for OLS and 0.96 for ML. ML-fitted model ensembles reduced the bias of FM 

estimates of the examined pasture. Overall, ML models better represented the relationship 

between pasture height before grazing and FM than OLS models, when fitted with pasture 

management variables and RS information. ML models can be used as a tool for daily 

decision-making in pastoral production systems. 
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Introduction 

 

Animal production using grazed pastures depends on the rate of accumulation of forage 

mass (FM), as well as on the timely allocation of an adequate stocking rate to take 

advantage of the FM; other important aspects are nutritional quality and seasonality in 

the rate of accumulation of FM. Cost-effective management of a pasture through direct 

grazing involves, among other things, implementing grazing management without 

compromising vegetation cover regrowth, as well as accurately knowing the FM in the 

pasture before and after grazing(1). Traditionally, FM is measured directly with forage 

cuts in quadrants of known area, distributed in a spatially representative manner and in a 

sufficient number that represents the variability of the vegetation cover in the pasture(2,3). 

The cutting of quadrants is laborious and therefore methods and devices have been 

developed for the indirect estimation of FM(4-6). Pasture canopy height, measured with a 

sward stick, is useful to represent the FM, although the relationship may be different 

depending on the botanical composition, density of the pasture canopy and season of the 

year(7-9). The height of the compressed forage measured with a rising plate meter estimates 

the FM considering the density of the canopy and is a very common practice at the farm 

level in countries such as New Zealand(2). The relationship between canopy height and 

FM in ryegrass and white clover pastures is well known and routinely applied in New 

Zealand(10); for pastures with other forage species such as alfalfa, more research is needed 

to determine the relationship between canopy height and FM(8). 

 

Remote sensing (RS) by orbital satellites measures spectral reflectance, the proportion of 

incident energy reflected by the Earth’s surface at different wavelengths; these 

measurements have been associated with vegetation activity processes(11). With RS 

information, it is also possible to estimate environmental variables such as temperature, 
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rainfall, and others(12). The wide availability and free access of RS products is an 

opportunity to explore crop dynamics and establish relationships with productive 

parameters, such as FM. The time series available for different RS products allow 

retrospective studies to be made, which is valuable for evaluating pasture management 

practices and regional grassland studies. However, the spatial scale of measurement is 

coarse in some RS sensors and is an important disadvantage in studies such as the one 

described in this research. 

 

Recently, a variety of machine learning (ML) algorithms have been incorporated into 

regression analysis and they are an alternative to ordinary least squares (OLS) regression. 

Photosynthesis in ecosystems, named gross primary productivity and net primary 

productivity (when discounting losses by respiration), has been modeled with empirical 

or mechanistic approaches, from OLS models to those that simulate ecophysiological 

processes at the global level based on RS(13). Net primary productivity includes 

photosynthetic partitioning into aerial and root biomass and therefore does not reflect the 

FM available for grazing. Lang et al(14) estimated arid grassland production using 

measurements from rainfall RS sensors, spectral reflectance obtained from the Landsat 7 

satellite and random forest; a ML algorithm. Using Neural Networks, another ML-type 

algorithm, Chen et al(15) related the spectral reflectance measured by the Sentinel-2 

satellite and FM on dairy farms of Tasmania in Australia. In these studies, the coefficient 

of determination (r2) in different models was between 0.6 and 0.7. Conceptually, it is 

important to incorporate humidity conditions, in the short or medium term, to explain the 

carrying capacity of the grassland(16), since water is the main limiting resource of plants 

in arid and semi-arid environments. The conditions of water availability for plants can be 

represented by the precipitation (P) that occurred, water available in the soil or vapor 

deficit in the atmosphere. However, to explain the FM, not only the P occurred in the 

period of accumulation of the FM (month in which the FM was measured) is important, 

but also the humidity conditions that occurred in previous months. 

 

In the present work, the relationship between FM and pasture height was examined as a 

baseline to compare other models that used meteorological variables obtained by RS or 

in conjunction with variables representative of pasture management (PM) conditions; 

such as the grazing and rest periods of the grazed area or the pasture height itself. In 

particular, the usefulness of models to predict FM based on previous rainfall and 

temperature conditions in different time windows was explored; for example, the P 

accumulated in the previous month, in two months or three months before the 

measurement of the FM. The objective was to obtain a predictive model of FM that could 

be incorporated into grazing planning. For this purpose, three years of measurements on 

a mixed of alfalfa-grass pasture grazed by beef cattle, were used. 
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Material and methods 
 

Site 

 

The study was carried out at the Centro de Enseñanza, Investigación y Extensión en 

Producción Animal en el Altiplano, run by Facultad de Medicina Veterinaria y Zootecnia 

from the Universidad Nacional Autónoma de México. The site is located at 20° 36’ 13.88” 

N, 99° 55’ 02.91” W and altitude of 1,913 m asl. The climate is extreme dry Ganges type 

without dry spells, BS1 0w(e)g, according to the historical climatological records (1951 

to 2006) of climatological station 22025; the closest to the site, where the annual averages 

of precipitation and temperature are 458 mm and 23.5 °C(17). 

 

The pasture was established in 2004 with a mixture of 50 % alfalfa (Medicago sativa) and 

grasses such as orchard grass (Dactylis glomerata), tall fescue (Festuca arundinaceae) 

and perennial ryegrass (Lolium perenne). The grazing area was 19 ha divided into 16 

paddocks of equal size and delimited through mobile electric fence. The pasture was 

irrigated with a center-pivot sprinkler system; however, there were no records of the 

irrigation sheet or calendar. The grazing mob was made up of 88 dams of the Limousin 

breed and their calves. The grazing time in each division was established based on: the 

estimation of FM, proximate chemical analysis of FM samples, and the dry matter (DM) 

allowance for the mob in each turn. Reproductive management was mainly with artificial 

insemination and year round calving. 

 

Data 

 

From 2008 to 2010, 399 FM observations were obtained prior to grazing of the allocated 

grazing area. Each FM observation corresponded to the beginning of a grazing cycle of 

the mob. The observations were considered experimental units, and each consisted of 

eight random measurements obtained with the modified quadrat  technique; to protect the 

alfalfa regrowth the pasture samples were cut to 10 cm height in an area of 0.25 m2(18). 

Forage samples were dehydrated in a forced-air oven for 48 h to determine the DM 

content and the data was expressed in kg DM ha-1. In each grazing cycle, the following 

were recorded: the height of the pasture (H_pasture), the date of grazing (Day_grazing 

and Month_grazing), grazing time (G_time), resting time of the grazed area from the 

previous grazing (R_time), month of the beginning of growth in the previous grazing 

cycle (Month_beg_grow) and the average monthly pasture accumulation rate of DM 

(PAR, kg DM ha-1 d-1). These variables were collectively referred to as pasture 

management (PM) variables. 

 

Using the Application for Extracting and Exploring Analysis Ready Samples of the Land 

Processes Distributed Active Archive Center of the National Aeronautics and Space 

Administration (NASA), the MCD43A4 version 6(19) product was requested. The 

MCD43A4 product is generated from measurements made by Moderate-Resolution 



Rev Mex Cienc Pecu 2023;14(1):61-77 
 

65 

Imaging Spectroradiometer (MODIS) sensors at a spatial resolution of 500 m2. This 

product consists of seven reflectance bands adjusted by the Bidirectional Reflectance 

Distribution Function and produced daily, which are a moving average of the contiguous 

16 days measurements. Data from eight contiguous pixels corresponding to the polygon 

of coordinates: 99.93 W, 20.60 N to 99.92 W, 20.61 N, were downloaded. The radiation 

spectrum (nm) covered by bands one to seven is (b1-b7): 620-670, 841-876, 459-479, 

545-565, 1230-1250, 1628-1652 and 2105-2155. Rainfall data were from the 3IMERG 

version 6 product of the Global Precipitation Measurement Mission of NASA obtained 

through the Giovanni portal (https://giovanni.gsfc.nasa.gov/giovanni). The P data (mm) 

was the monthly accumulated for the coordinate 99.92 W, 20.60 N; the spatial resolution 

of 3IMERG is 10 km2. Through the Giovanni portal, the MODIS MOD11A2 version 6 

product of daily surface temperature during the day (LST_d) and night (LST_n) was also 

obtained. 

 

For MODIS, good quality was determined according to the quality data accompanying 

the respective products. In the R(20) language, a code was generated to find the 

measurement dates of the MCD43A4 closest to the measurement date of the FM. Using 

Qgis v3.16.4(21) and a satellite image from Google Maps(22) as a guiding template, a vector 

layer corresponding to the area of irrigation by central pivot was determined; the circle 

comprised different area of the sampled pixels of the MCD43A4. For each reflectance 

band, the average corresponding to the vector was obtained using the extract function of 

the raster package. 

 

Variable generation 

 

The reflectance in the bands b2 and b1 is associated with the ability of vegetation to 

absorb photosynthetically active light and there are different indices to represent this 

activity of the vegetation. The normalized vegetation index (NDVI) and the enhanced 

vegetation index (EVI) were calculated using the spectral bands of the MCD43A4 

product: 

 

𝑁𝐷𝑉𝐼 =
𝑏2−𝑏1

𝑏2+𝑏1
            1) 

𝐸𝑉𝐼 = 2.5
(𝑏2−𝑏1)

(𝑏2+2.4𝑏1+1)
       2) 

 

With the time series of P, the following variables were calculated: the P accumulated in 

the previous month (P_lag_1), the P accumulated in the previous two months (P_lag_2) 

and so on until the P accumulated in six previous months: (P_lag_3, P_lag_4, P_lag_5 

and P_lag_6). For LST_d and LST_n, the average of the previous month (LST_x_avg_1), 

of the previous two months (LST_x_avg_2) or of the previous three months 

(LST_x_avg_3), where x represents the indicative d or n, for day or night, was calculated. 

These variables represented the prevailing environment before measuring FM. 
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Modeling 

 

The baseline model for comparison was the linear regression between FM and H_pasture. 

Four modeling scenarios according to the type of algorithm were explored: ML or OLS 

and the type of variables available for modeling: using only explanatory variables of RS 

origin (ML_RS and OLS_RS) or RS variables and those of PM (ML_RS_PM and 

OLS_RS_PM). The models were trained with 80 % of observations chosen randomly and 

20 % were reserved for evaluation. Model evaluation is a black box concept about the 

relevance of the result of the model(23). The statistical procedures were carried out in the 

R language, the name of the packages is indicated where relevant. An orthogonal 

regression (major axis regression) model was fitted between observed values and 

predicted values using the smatr 3 package, since observed FM values are measured with 

error(24). The following were calculated: coefficient of determination (r2), root mean 

square error (RMSE), the Akaike (AIC) and Bayesian (BIC) information criteria, 

deviance, and bias. These quantitative indicators, as well as graphical evaluation, are 

techniques commonly used to evaluate mathematical models for predictive purposes(25). 

 

In the case of OLS, the variance inflation value (VIF) was used to identify 

multicollinearity using the stepAIC and vif(26) functions; 10.0 was the maximum allowed 

value of VIF to retain variables in the OLS multiple regression model. The significance 

level was set at 0.05 for parametric analyses and residual analysis of the OLS regression. 

 

The ML model was generated with the h2o.automl function of the H2O(27) package, it 

produces a set of models with different algorithm realizations: deep learning (DL), 

feedforward artificial neural network (NN), general linear models (GLMs), gradient-

boosting machine (GBM), extreme gradient-boosting (XGBoost), default distributed 

random forest (DRF) and extremely randomized trees (XRT). Each individual model can 

be used to predict the response, but also to generate two types of model ensemble: one is 

from all the algorithms used in the generated models, and the second type of ensemble 

only considers the best models of each class or family of algorithms; both types of 

ensembles generally produce better predictions than individual models(23). 

 

The h2o.automl function was run twenty times with the following parameters: a) 

max_runtime_secs = 500, the maximum runtime before training a final ensemble of 

models, b) nfolds = 15, number of folds for cross-evaluation (k-folds), c) seed = a random 

integer value with value between 1 and 50; each of the runs used a randomly chosen seed 

value, d) nthreads = 50, the number of available processing threads, e) max_mem_size = 

100GB, the available RAM in Gigabytes. The approximate runtime was 50 min on an 

equipment with dual Xeon 2680 v4 processor with 14 cores and double thread each and 

128 GB of RAM. 

 

With the h2o.explain function, the importance of the variables in the individual ML 

models and dependence figures was obtained(27). Deviance was used as a goodness-of-fit 

statistic to rank the generated models. Machine learning has two elements for supervised 
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learning: training loss and regularization. The training task attempts to find the best 

parameters for the model while minimizing the training loss function; this function could 

be the mean square error or others. The regularization term controls the complexity of the 

model, helping to reduce overfitting. Overfitting becomes apparent when the model 

performs accurately during training, but accuracy decreases during the evaluation of the 

model. A good model needs extensive fitting of parameters by running the algorithm 

several times to explore the effect on regularization and accuracy of cross-validation(28). 

In this research, the function of training loss was the deviance, which is a likelihood 

generalization of the sum of squares of the error; lower or negative values indicate a better 

performance of the model(29). 

 

Results and discussion 
 

The average of FM of the pasture was 2,134 kg DM ha-1 with a seasonal pattern of lower 

production in winter and higher production in summer (Figure 1a). FM was different 

among the three years 2,121, 1,770 and 2,392 kg ha-1 for 2008 to 2010 (P<0.05). The 

rainfall was 636, 382 and 552 mm, respectively. The greatest amount of rainfall was from 

July to September; for 2010, February was atypical with 151 mm (Figure 1b) and possibly 

positively impacting the FM from March in that year. The rainfall recorded by the IMERG 

product in 2008 and 2010 was higher than that recorded by the climatological station 

closest to the study site; this rainfall estimate was considered accurate because this 

product has shown good agreement with terrestrial precipitation records(30). The seasonal 

behavior of the FM suggested an important effect of rainfall, even in the case of this 

irrigated pasture. April and May were the months with the highest average LST_d (Figure 

1c). The difference between LST_d and LST_n was greater from April to May (28.5 and 

27.3 °C) and lower in July to September (17.3, 16.4 and 15.6 °C); which indicates the 

site’s extreme characteristic of the climate during the spring. These environmental 

conditions were also reflected in seasonal changes in pasture management on rest days, 

forage height, and PAR (Figure 2). 

 

Figure 1: Environmental variables and production of a mixed alfalfa-grass mixed 

pasture grazed by beef cattle: a) forage mass (FM), b) rainfall (P) and c) diurnal (●) and 

nocturnal (○) surface temperature (LST) 
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Figure 2: Management of a mixed alfalfa-grass mixed pasture grazed by beef cattle 

during 2008 (●), 2009 (○) and 2010 (■): a) Rest days before grazing, b) rate of 

accumulation of forage (PAR) of the period, c) pasture height 

 
 

In MA regression, the intercept was numerically close to 0 in the ML_RS_PM scenario 

and its slope was equal to 1, a model with slope equal to 1 and intercept equal to 0 

indicates good fit. The lower value of the RMSE, AIC, BIC and deviance suggested a 

better representation of the FM with the ML_RS_PM scenario (Table 1). Regarding 

deviance analysis, the comparison between two or more models will be valid if they fit 

the same data set, this requirement was not met because the predicted values of FM were 

inherently different for each model generated. The difference of deviances is distributed 

approximately as X2 with degrees of freedom equal to the difference in the number of 

parameters between the models(14), with this difference being 0 for the case of simple 

linear regression models used to represent the relationship between estimated and 

predicted values in each modeling scenario. For these two reasons, deviance analysis was 

not possible; therefore, the selection of the best model was based solely on the numerical 

value of the goodness-of-fit measures. The worst model was the simple regression 

between FM and H_pasture, not only according to the goodness-of-fit means but also in 

the graphical representation of the estimated vs. observed values (Figure 3). 
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Table 1: Goodness-of-fit measures between observed and estimated FM values 

resulting from modeling scenarios using algorithms of ordinary least squares (OLS) or 

machine learning (ML) in combination with explanatory variables related to pasture 

management (PM) alone or in conjunction with remote sensing variables (PM_RS) 

  OLS_height OLS_RS OLS_RS_PM ML_RS ML_RS_PM 

r2 0.40 0.49 0.67 0.70 0.97 

RMSE 361.0 341.0 269.0 259.0 78.0 

AIC 734.0 724.0 686.0 691.0 542.0 

BIC 738.0 728.0 690.0 695.0 546.0 

Deviance 8079684.0 6874194.0 4377078.0 4003784.0 363954.0 

Bias -3.4 47.1 16.5 -35.1 -1.3 

CI 2.5 % -95.9 -39.2 -52.7 -43.5 -21.2 

CI 97.5 % 89.0 133.5 85.7 96.4 18.6 

MA intercept -1799.0 -2044.0 -594.0 -735.0 27.0 

CI 2.5 % -3386.0 -3395.0 -1137.0 -1257.0 62.0 

CI 97.5 % -831.0 -1162.0 -162.0 -316.0 112.0 

MA slope 1.9 2.0 1.3 1.4 1.0 

CI 2.5 % 1.4 1.6 1.1 1.2 0.9 

CI 97.5 % 2.6 2.7 1.6 1.6 1.0 

r2= coefficient of determination; RMSE= root mean square error; AIC= Akaike information criterion; 

BIC= Bayesian information criterion; MA= major axis regression; CI= confidence interval. 

 

Figure 3: Evaluation between observed and estimated values of FM using algorithms of 

ordinary least squares (OLS) or machine learning (ML) 

 
 

a) OLS, predictor variable forage height; b) OLS_RS scenario; c) OLS_RS_PM scenario; d) ML_RS 

scenario; e) ML_RS_PM scenario. Coefficient of determination (r2), root mean square error (RMSE), bias 

and its 95 % confidence interval (CI=IC). 

 



Rev Mex Cienc Pecu 2023;14(1):61-77 
 

70 

The PAR and H_pasture variables of PM were the most important (Table 2), both in the 

ML and OLS models; the variable R_time was much less important (Table 2). The most 

important RS variables were: LST_n, P, P_lag_3 or P_lag_5, LST_d_avg_3 or 

LST_n_avg_3; indicating the relevance of the environmental conditions of precipitation 

and temperature not only of the current month, but of the conditions preceding the 

measurement of the FM. Reflectance (b1 – b7) and vegetation indices were incorporated 

into ML models, but the stepwise procedure did not choose them for OLS. Compared 

with PAR and H_pasture, reflectance variables were of low importance in the RS_PM 

scenarios of ML. Spectral reflectance bands were more important than EVI and NDVI; 

this finding coincides with the FM study for mixed pastures of temperate climate(15). 

Although the prediction of fresh biomass in Brachiaria pastures based on the NDVI with 

r2= 0.73(31) was considered adequate. 

 

Table 2: Important variables included in the scenarios using two possible algorithms: 

ordinary least squares (OLS) or machine learning (ML) and two types of explanatory 

variable: only remote sensors (RS) or pasture management variables and RS (RS_PM) 

 Machine learning (ML) Ordinary least squares (OLS) 

Variable 

Remote 

sensors (RS) 

Remote sensors 

(RS)_Pasture 

management 

(PM) RS RS_PM 

LST_d_avg_3 0.081 0.023 0.036 0.027 

LST_n_avg_3 0.064 0.017   

LST_d 0.036 0.036   

LST_n 0.161 0.007 0.060  

b1 0.027 0.008   

b2 0.034 0.014   

b3 0.028 0.003   

b4 0.033 0.004   

b5 0.044 0.008   

b6 0.048 0.010   

b7 0.096 0.008   

P 0.058 0.008 0.048  

P_lag_3 0.099 0.023   

P_lag_5   0.270  

NDVI  0.001   

EVI 0.018 0.001   

H_pasture  0.303  0.231 

Month_beg_grow  0.006  0.020 

R_time  0.101  0.072 

PAR  0.417  0.368 

For ML models the sum of importance is 1, for OLS models the sum of importance is equal to the r2. 
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The partial dependence that existed between the prediction of FM and the value of some 

of the most important variables in some ML models is shown in Figure 4, in the ML_RS 

scenario and in Figure 5 for the ML_RS_PM scenario. The ensembles of ML models had 

lower deviance compared to some ML algorithms in the two scenarios and were therefore 

considered better representations of the FM. The partial dependence figures indicate how 

the explanatory variable influences the predictions of one of the models or ensembles, 

after standardizing the effect of other variables. For linear regression models (such as the 

GLM model obtained by ML), the figure is a straight line with slope equal to the 

parameter of the model(32). FM depended directly and proportionally on the variables 

PAR, H_pasture and R_time in different models even for a GLM model (pink line), but 

for variables P_lag_3 and LST_d, the dependence differed between the GLM model and 

ML models, particularly the DL-type model (dark green line) which was the best 

individual ML model (Figure 5). The interpretation of the figures is improved with the 

frequency histogram of the observations, depending on the value of the variable. Where 

there was less frequency of data, it was interpreted that dependence was not supported by 

sufficient evidence. An example of this situation was the dependence of LST_n in Figure 

4, where the DL-type model has an abrupt ascent, but the last two class intervals of the 

histogram have few observations. 

 

Figure 4: Partial dependence of FM and: A) monthly average of nocturnal surface 

temperature (LST_n), B) precipitation accumulated in the previous three months 

(P_lag_3), C) reflectance band b7 of the MODIS MCD43A4 product, D) monthly 

average of the diurnal surface temperature in the previous three months (LST_d_avg_3) 

 
The gray bars are the data frequency according to class intervals of the variable. Only models of lower 

deviance (value in parentheses) obtained by machine learning in the scenario using only variables 

measured with remote sensors (ML_RS) are shown. 
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Figure 5: Partial dependence of FM and: A) rate of accumulation of forage (PAR), B) 

forage height (H_pasture), C) pasture rest days (R_time), D) monthly average of the 

diurnal surface temperature (LST_d) 

 
The gray bars are the data frequency according to class intervals of the variable. Only models of lower 

deviance (value in parentheses) obtained by machine learning in the scenario using variables measured 

with remote sensors and of pasture management (ML_RS_PM) are shown. 

 

The ML_RS_PM scenario included the PAR variable, and this could be a limitation for 

the practical application of the model. To clarify this aspect, an ML model was built 

without this variable and using the same training data, resulting in an r2 of 0.76, RMSE 

of 232.2 and bias of –35.6 (CI –94.4 to 23.1), being better than that obtained in the 

ML_RS scenario (data not shown). This result has two aspects of importance: other 

variables available for modeling can replace a variable identified as the most important 

and second, it is possible to incur into a local optimal solution, even when the ML 

algorithm explored a solution space with different optimization parameters. A possible 

alternative would be to increase the number of times the h2o.automl function is run and 

increase the value of the max_runtime_secs constant. 

 

Despite the coarse spatial resolution of the MODIS and GPM remote sensors (250 m2 and 

10 km2), the FM was adequately estimated in the ML_RS scenario (Figure 3d), the r2= 

0.70 of this model was within the range recently reported in the literature for ML models 

that estimate biomass with RS data(14,15) or gross primary productivity(33). A model based 

on RS data is only attractive for the management of large grasslands. When RS variables 
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were used in combination with pasture management variables that are easy to measure 

(H_pasture) or record (R_time and Month_beg_grow), the estimate was very good 

(Figure 3e); the r2= 0.97 was similar to the r2= 0.96 of biomass estimated from 30 m 

spatial resolution RS data(5). The prediction of the forage mass obtained with forage 

height measurements improved when pasture management variables and local 

meteorological data were incorporated into an ML algorithm of random forest (r2= 0.82), 

this approach was judged practical for producers, albeit the cost of meteorological 

instruments(2). 

 

Despite being an irrigated pasture, the previous short-term rain was important information 

for OLS and ML models. In a recent study, it was identified that the spatial-temporal 

variation of gross primary productivity was not only explained by reflectance bands of 

the MODIS MCD43A4 but was also related to the vapor pressure deficit(33). Similar to 

the result of these authors, here it was useful to include other reflectance bands besides 

b1, b2 and vegetation indices such as NDVI and EVI. From a practical point of view, the 

model of the ML_RS_PM scenario was considered very feasible to implement as it used 

routine measurements of the management of the pasture and NASA’s remote sensor data 

which are publicly accessible. 

 

Animal production under grazing is sustainable when feed consumption that meets 

nutrient needs is ensured. In grazing management, this depends on adjusting the stoking 

rate according to the phenological stage of the plant, to the FM before and after grazing 

and to the forage that is decided to leave as residual pasture mass. For beef cattle, adequate 

FM before grazing can be set at  2,500 kg  ha-1 and FM  after  grazing around 1,200 kg 

ha-1(10); although these thresholds will depend on the reproductive and physiological stage 

of the animal, the season of year and different pasture management strategies for feed 

rationing, phenological control or balance in botanical composition(34). For these reasons, 

it is important that the predictive model of FM fits well at the extremes of its range and 

with the exception of the ML_RS_PM scenario, there was an overestimation of the FM 

when it was less than approximately 1,500 kg ha-1 (Figure 3). 

 

Pasture mass is spatially variable given by differences in soil moisture and fertility, dung 

deposition, alterations in the plant community by selective grazing and other factors. 

Forage quadrant cuttings are limited to represent and capture this spatial variability in 

pastures and therefore the statistical method of sampling is important. Sensors on board 

unmanned aerial vehicles or drones are an alternative to capture variability in vegetation 

reflectance on the spatial scale of centimeters, but the cost of multispectral equipment, 

data processing and operational limitation to cover the territory (35), in addition to the need 

for a calibration function for forage mass, must be considered. 
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Conclusions and implications 
 

The prediction of FM had lower bias with ML models than with OLS models, especially 

when remote sensors and pasture management variables were incorporated in the models. 

ML ensembles had lower deviance compared to some of the individual ML models. The 

use of RS variables predicted FM similarly to the relationship between H_pasture and 

FM, although the ML model had lower bias. The models explored would have to be tested 

in other pasture conditions in order to have a spatial application, be able to represent 

ecosystems and to value the environmental service of carbon capture. At the local farm 

scale, these models could be applicable for everyday use in farm feed budgeting or 

retrospective evaluation of farm pasture management. In these cases, the results presented 

here are promising. 
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