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Abstract:  

In Mexico, information on the bovine fecal microbiota (Bos taurus) is scarce. The present 

study describes the diversity and abundance of bacteria in fecal samples from rangeland 

bovines, collected in the Mapimi Biosphere Reserve in the central part of the Chihuahuan 

desert. Fecal samples were analysed using high-throughput next generation massive 

sequencing using V3-V4 16S rRNA on Illumina Miseq. A total of 17 phyla, 24 classes, 33 

orders, 50 families, 281 genera, and 297 species were identified. Firmicutes and 

Verrucomicrobia were the most abundant phyla. The most abundant genera were 

Sporobacter, PAC000748_g (genera into the Ruminococcaceae family) and 

Eubacterium_g23. Three genera (Clostridium, Corynebacterium and Fusobacterium) and 

one species (Campylobacter fetus) potentially pathogenic bovine bacteria were registered. 

This information represents a bacteriological baseline for monitoring the grazing bovine 

intestinal health status, and to trace possible interactions with the fecal microbiota of native 

roaming wildlife in the area. 

Key words: Bos taurus; Campylobacter fetus; Bacterial diversity; 16S rRNA gene; Massive 

sequencing. 
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Introduction 
 

The microbial community of the gastrointestinal system of cattle remains understudied. Due 

to its influence on nutrient absorption, productivity, potential reservoir of human and animal 

pathogens, as well as overall animal health, there is a need to better understand bovine gut 

microbial communities(1). Recently, high-throughput sequencing using 16S rRNA amplicons 

has provided deeper information on the fecal bovine microbiota composition, and the results 

obtained to date indicate a high diversity(2).  
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The central part of the Chihuahuan Desert in Mexico has a high diversity of wildlife(3,4). The 

bovine (Bos taurus) has been raised as grazing livestock since its introduction at the end of 

the 16th century, being the most important economic activity in this area(5). However, this 

activity is the main reason of ecological deterioration which affects wildlife; for example, 

this ruminant species competes for forage resources with endemic animal species (i.e., 

Gopherus flavomarginatus, Bolson tortoise)(3). Cattle grazing also exerts strong pressure on 

plant populations, modifying their cover; this may increase soil erosion susceptibility in this 

desert(3,6).  

 

The cattle gut microbiome has many microbial species that play an important role in health 

and productivity(7,8). These microbes are essential for the fermentation of consumed plant 

matter that is converted into energy for the host(9). However, bovines asymptomatically 

transport bacterial species that are potential pathogens to wildlife as Escherichia coli, 

Campylobacter spp., Salmonella spp. and Listeria spp.(6,10). In recent years, the extensive use 

of land for agriculture has increased the densities of cattle populations creating positive 

correlations with pathogenic infections by fecal bacteria(11). Though, knowledge about 

bovine fecal bacterial diversity under grazing management systems is relatively scarce(12). 

This study aimed to explore for the first time the diversity and abundance of fecal bacteria 

from bovines under grazing-marginal conditions in the Mapimi Biosphere Reserve, center of 

the Chihuahuan desert, using next-generation sequencing (16S rRNA). 

 

 

Material and methods 
 

All the methods and activities of this study were in strict accordance with accepted guidelines 

for ethical use, care and welfare of animals in research at international(13) and national(14) 

levels, with institutional approval reference number UJED-FCB-2018-07. 

 

 

Study area 

 

The study was developed in the Mohovano de las Lilas locality, northeast of the Mapimi 

Biosphere Reserve in Mexico (26°00’ and 26°10’N, 104°10’ and 103°20’W) in the center of 

the Chihuahuan desert. This area has warm, very arid climate, with an average annual 

temperature of 25.5 ° C, and an average annual precipitation of 264 mm. The predominant 

vegetation is rosette and microphile scrub, as well as halophyte, and gypsophila plants(15). 
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Field work 

 

In July 2018, three fresh fecal samples were collected from three healthy male bovines. From 

each fecal sample, 0.25 g was collected from the center of the sample and deposited it in 

BashingBead™ cell lysis tubes (Zymo Research Corp.) adding 750 μL of lysing/stabilizing 

solution. Each tube was processed in a TerraLyzer™ cellular disruptor (Zymo Research 

Corp.) during 20 sec according to the equipment specifications.  

 

 

Laboratory work 

 

DNA was extracted from the samples using the Xpedition™ Soil/Fecal DNA MiniPrep kit 

(Zymo Research Corp.) in a laminar UV flow hood in sterile conditions. The amount of DNA 

obtained was measured in a Qubit™ fluorometer (Invitrogen). Then, the V3-V4 region of the 

16S rRNA gene was amplified using the following primers(16): S-D-Bact-0341-b-S-17, 5´-

CCTACGGGNGGCWGCAG-3´ and S-D-Bact-0785-a-A-21, 5´-

GACTACHVGGGTATCTAATCC-3´. The step after sequencing was realized using a 

Illumina protocol(17,18) and thereafter, the samples was sequenced  in MiSeq of 2 × 250 paired 

final. The complete sequencing process is available in García-De la Peña et al(19). 

 

 

Data availability 

 

The files used in this study were deposited into the NCBI Sequence Read Archive (SRA) 

database (Accession Number: PRJNA614584).  

 

 

Bioinformatic analysis 

 

The DNA sequences were analyzed using Quantitative Insights into Microbial Ecology 

bioinformatics software (QIIME)(20). Both forward and reverse sequences were assembled 

using the PEAR program(21) considering Q30 the quality criterion (one false base for every 

1,000 bases). Chimeric sequences were discarded with USEARCH(22). Then, the operational 

taxonomic units (OTUs) were selected with the UCLUST method(22) at 97 % similarity; a 

representative sequence for each OTU was obtained, and the taxonomy was assigned using 

EzBioCloud database as reference(23). A simple random rarefaction process was performed(24) 

in order to obtain a standardized file for all samples. The relative abundance for the phylum 

and family levels were represented as stacked bar plots using R, and genus level was 

visualized as a heatmap using Morpheus software (Morpheus, 
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https://software.broadinstitute.org/morpheus); hierarchical clustering (average linkage 

method with Euclidean distance) was used to visualize samples dendrogram(25).  

 

 

Results and discussion 
 

In this study, the average number of sequences assembled was 155,915. A mean ± sd of 

109,814 ± 16,686 bacterial sequences were obtained after taxonomic designation. The 

average number of OTUs with a 97 % of similarity was 6,661 ± 431 (Table 1).  

 

Table 1: Fecal sequences information of Bos taurus at the Mohovano de las Lilas locality, 

Mapimi Biosphere Reserve, Mexico 

BS= bacteria sequences after taxonomical designation, BSS= bacteria sequences after singletons removal; 

OTUs= operational taxonomic units. 

 

A total of 17 phyla, 24 classes, 33 orders, 50 families, 281 genera, and 297 species were 

determined. The most abundant phyla (Figure 1) were Firmicutes (𝑥̅ = 88.9 %) and 

Verrucomicrobia (𝑥̅ = 6.4 %). The same phyla were reported in grazing Mongolian cattle in 

Hulunbuir grassland and Alxa Desert in China(26). These phyla are considered normal 

components in the basic fecal microbiota of domestic herbivores(27,28) and other species of 

ruminants(29,30). Firmicutes has been reported as the most frequent phylum in fecal samples 

of cattle, horses(2,31,32), and red deer(33). This abundance is related to high fiber intake(34). 

Verrucomicrobia was the second abundant phylum in the cattle samples in this study. Aricha 

et al(26) determined that this phylum was very abundant in the intestinal tract of the grazing 

Mongolian cattle in the Alxa Desert, and argue that this may be related to the extremely 

strong disease resistance of this breed of cattle. It is important to analyze later if this phylum 

confers resistance to cattle diseases in the Mapimi reserve, which would represent an 

advantage for the bovine’s health in this area. Also, Bacteroidetes was reported in previous 

studies Mongolian(26), and Holstein Friesian(36) as the second most abundant phylum in other 

cattle species such as grazing and feedlot Angus Beef(35). However, Bacteroidetes was found 

in a minimum proportion (0.001%) in the cattle samples of the Mapimi reserve. This disparity 

Sample Total Assembled Discarded BS BSS OTUs 

1 322,428 138,862 183,566 131,275 98,084 6,293 

2 223,470 145,379 78,091 136,807 102,441 6,556 

3 305,380 183,506 121,874 173,177 128,916 7,135 

Mean 283,759 155,915 127,843 147 086 109 814 6,661 
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can be related to the type of diet(37), geographical differences(26), and the environment in 

which they are distributed(38). Nevertheless, this information can only be confirmed by 

developing specific studies in this respect. 

 

Figure 1: Relative abundance (%) of fecal bacteria taxa (phylum level) from three samples 

of Bos taurus at the Mohovano de las Lilas locality. Only the first 10 more abundant phyla 

are shown 

 

  
 

At family level, Ruminococcaceae (𝑥̅ = 68.9 %) and Lachnospiraceae (𝑥̅ = 10.9 %) were 

abundant in the fecal samples collected (Figure 2); both families are found in the mammalian 

gut environment and have been associated with good health(39). Some genera of the 

Ruminococcaceae family are part of the normal intestinal microbiota of cattle, sheep, and 

goats metabolizing cellulose, and colonizing the rumen(40); these bacteria taxa are important 

for the degradation and fermentation of polysaccharides in the diet of ruminants(41). In 

addition, it has been reported that members of the Lachnospiraceae family exhibit pectin 

hydrolysis activities in the cattle´s rumen(42) associated to the butyric acid production and 

providing energy for the growth of intestinal epithelial cells(43). The high abundance of 

Lachnospiraceae in cattle protects the intestine and acts as a barrier that favors the adaptation 

of the host to its environment; it also promotes a decrease in the incidence of intestinal 

diseases(26). 
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Figure 2: Relative abundance (%) of fecal bacteria taxa (family level) from three samples 

of Bos taurus at the Mohovano de las Lilas locality. Only the first 10 more abundant 

families are shown 

 

 
 

From 281 classified genera found in this study, 36.6 % have a taxonomic name; this 

percentage is higher than the reported by Kim and Wells(44) in feces of cattle where only 110 

genera were classified, and about 41 % of the total sequences couldn’t be assigned to a known 

genus (Figure 3). Nevertheless, the results showed here increase the number of genera of the 

B. taurus fecal microbiota previously reported (12,45,46), who confirmed that the fecal bacterial 

microbiota is extremely diverse in cattle, and has not yet fully described. Sporobacter was 

the most abundant genus found in the fecal samples of cattle in this study. This genus was 

reported in alpaca(47), deer sika(28), horse(48), donkey(49), and the Bolson tortoises Gopherus 

flavomarginatus(19). This genus is related to digestion of plant ligno-cellulosic matter; 

however relatively little is known about the role of this bacteria in the degradation process(50). 

Durso et al(51) reported Faecalibacterium, Ruminococcus, Roseburia, and Clostridium as 

important components of the fecal bovine microbiota. These genera were also determined in 

the present study. According to some studies(52,53) these bacteria constitute 50 to 70 % of the 

total number of microorganisms in the digestive system of ruminants. These animals have 

specific gut microbial taxa as they are dependent on these bacteria to extract energy and 

nutrients from food(54), besides having specialized anatomical and physiological adaptations 

to the cellulolytic fermentation of low nutrition - high fiber vegetal material(55). The presence 

of other bacterial genera reported in this study could be the result of environmental and 

genetic factors, age, breed, diet, phylogeny, among others(56,57,58). Recently(56,59,60), was 

demonstrated that herbivorous animals have the most diverse microbiota since they depend 

on microbial metabolic pathways to maximize energy and nutrient extraction from 

feeding(61). 
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Figure 3: Heatmap of Bos taurus fecal bacteria sample at genus level at the Mohovano de 

las Lilas locality. Only the first 40 more abundant genera are shown 
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Although the gut microbiome usually remains stable over time assisting as a defense system 

against pathogens and other disease-causing agents in the host, the disturbance of this 

community can lead to animal disease(62,63). In the present study, the samples collected were 

obtained from apparently healthy bovines. However, bacteria considered of veterinary 

importance were found in these animals; this could be a potential health risk because they 

are carriers of these microorganisms. For example, Campylobacter, Clostridium, 

Corynebacterium and Fusobacterium were found in the fecal samples. These genera have 

been associated with cattle disease. Campylobacter has been reported as a cause of infertility 

and abortion in ruminants(64,65); also represents a critical threat to public health, because it 

can be transmitted from cattle to humans(66,67,68). Clostridium has been reported causing 

diseases and death in ruminants, especially in cattle; examples are respiratory diseases(69), 

botulism(70) and the blackleg(71). Corynebacterium has been reported in beef and dairy cattle 

associated with renal disease(72), mastitis(73,74), and tuberculosis(75,76,77); also, it is considered 

as an important emergent pathogen for humans(78). Finally, Fusobacterium was reported by 

others(79-82), causing abscesses in cattle. It is important to develop other studies that provide 

information on the pathogenicity and dynamics of these potential pathogens in the bovines 

of the Mapimi reserve. 

 

At species level, Pseudobacteroides cellulosolvens and Campylobacter fetus were registered 

in the present study. Pseudobacteroides cellulosolvens is anaerobic bacteria that degrade 

plant cell wall polysaccharides and cellulosic, being capable of using cellulose or cellobiose 

as a sole carbon source(83). Campylobacter fetus is a relevant species; the main reservoirs of 

this bacteria are both the intestinal and the genital tracts in cattle and sheep(64,65). This species 

causes spontaneous abortion and infertility in cattle, while it is also an opportunistic pathogen 

to humans(84).  

 

Due to the free-grazing management in the Mapimi Reserve, the bovine feces remain over 

the soil until natural processes degrade them. Consequently, native fauna can be in contact 

with these feces, increasing the probability of interspecific transmission of some bacteria(85). 

Although it has been previously reported that there are no evidence of cross-parasite infection 

between cattle and mule deer in the Mapimi Biosphere Reserve(86), it is important to clarify 

whether this same scenario occurs for bacteria. McAllister and Topp(87) estimate that about 

77 % of the pathogens that usually infect livestock can also affect wildlife. However, also 

wildlife is considered an important source of microorganisms that could cause infectious 

diseases to domestic animals and humans(88,89). For these reasons, it is important to develop 

studies focused on risk management at the interface of domestic species and native fauna, 

considering the implications for the transmission of microorganisms with pathogenic 

potential(88,89). This information could lead to establish microbiological control strategies for 

wild fauna populations and livestock within the area. 
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Conclusions and implications 
 

 

Information about the bovine fecal microbiota under extensive grazing conditions is scarce. 

From economic, ecological and health perspectives, it is crucial to determine the bacterial 

diversity -from phyla to species-, in the intestine of domestic ruminants. The present study is 

the first insight into the fecal bacterial composition of bovines in the Mapimi Biosphere 

Reserve in Mexico using next generation sequencing. This information significantly expands 

the knowledge about the composition and abundance of bacteria that are part of the 

microbiological community of the bovine intestine. In this case, the approach was through 

the analysis of feces in free grazing cattle. Although a large number of bacterial taxa were 

reported from the collected samples, it was not possible to determine the genus or species of 

some bacteria, so it is still necessary to go further into the taxonomy using specific molecular 

markers. However, the results obtained in the present study could be used as a bacteriological 

baseline for monitoring the grazing bovine intestinal health status, and to trace possible 

interactions with the fecal microbiota of native roaming wildlife in the area. Finally, it is 

important to emphasize that the next generation massive sequencing is a very effective 

technique that simplifies the analysis of complete bacterial communities; therefore, 

complementary studies on the microbiota in this and other bovine populations in Mexico are 

warranted. 
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