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Abstract:  

Nematode parasites are an ongoing challenge in livestock production. Pharmaceutical 

anthelmintics are effective but pose their own risks. This is an overview of nematodiasis 

in small ruminants in Mexico focusing on the main problems faced by producers to 

maintain productivity. It includes general information on gastrointestinal nematodes and 

their effects on animal health and productivity. It also summarizes the main challenges 

faced by livestock producers in combating these parasites and current control and 

prevention strategies, including pharmaceuticals, anthelmintic resistance, grazing 

management, selective deworming, protein nutritional strategy, vaccination, and 

selection of animals genetically resistant to nematodes. The potential use of plants and 

compounds with nematocidal activity, and nematophagous fungi as biological control 

agents are also covered. Research by the Helminthology Department of the CENID-SAI 

of the INIFAP is highlighted, and a comprehensive nematode control method is proposed 

that targets different control strategies at specific nematode developmental stages. 

Controlling nematodiasis in small ruminants is vital to the success of production systems 

since it negatively affects animal health and producer results. Continued development of 

new nematode control options holds promise for successful long-term management of 

this disease. 
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Introduction 
 

 

Importance of sheep and goat production in Mexico 

 

 

Small ruminant production in Mexico represents a significant source of animal protein in 

human diets(1), and generates approximately 50,000 direct and indirect jobs that benefit 

as many as 400,000 families(2). However, animal health and producer income are 

adversely affected by poor quality pastures(3), high feed costs(4), extreme weather driven 

by climate change(5), and a suite of nematode parasites. 

 

 

Gastrointestinal nematodes in small ruminants 

 

 

Gastrointestinal nematodes (GIN) are cylindrical worms that inhabit the digestive tract of 

ruminants. There are considered significant parasites in the livestock industry, mainly in 

extensive systems, in both tropical and temperate climates(6). Adult parasites copulate and 

produce immense quantities of eggs which are released into the environment in the feces. 

Here they develop into infective larvae (L3) that contaminate pastures. Infection occurs 

when animals consume grass contaminated with larvae(7). The principal GINs in small 

ruminants in Mexico are Haemonchus contortus, Trichostrongylus colubriformis, T. axei, 

Teladorsagia (Ostertagia) circumcincta, Cooperia spp., Oesophagostomum, Trichuris 

ovis, Strongyloides papillosus and Bunostomum sp.(8,9). They generally occur 

simultaneously, causing clinical symptoms that can vary in severity, depending largely 

on animal age and nutritional status(10). Haemonchus contortus is considered one of the 

most pathogenic nematodes in sheep and goats due to its hematophagous habits and high 

prolificacy. Infection with H. contortus is known as haemonchosis and results in weight 

loss, poor appetite, decreased body condition, anemia, weakness, emaciation, edema of 

lower body regions, susceptibility to other diseases and death in young animals(11). 

 

Diseases from GINs occur in countries with tropical and subtropical climates(11), as well 

as those with temperate climates(12). No matter where they occur, GINs in small ruminants 

are the cause of substantial losses due to declines in animal productive potential(13). No 

study has yet been done on the losses generated by GIN in small ruminants in Mexico. 

However, based on the US$ 445.10 million dollar losses calculated in a study of the 
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economic impact of GIN in cattle in Mexico(14), it is probable that they also cause 

significant losses in goat and sheep production. 

 

 

Synthetic drugs or anthelmintics 

 

 

Anthelmintic (AH) drugs are intended for control of livestock parasites. They are 

classified according to their mode of action: 1) benzimidazoles; 2) imidazothiazoles; and 

3) macrocyclic lactones(15). Benzimidazoles (BZ) bind to the alpha subunit of the β-

tubulin protein, preventing polymerization between the alpha and beta subunits, blocking 

microtubule formation and causing death in nematodes(16,17). Imidazothiazoles (IMZ) act 

selectively as cholinergic agonists (nicotinic receptors) on the muscle cell membranes of 

GIN, resulting in muscle contraction and spastic paralysis(16). Macrocyclic lactone (ML) 

molecules bind selectively and irreversibly to the subunits of chlorine ion channels 

activated by different neurotransmitters (e.g. glutamate), causing hyperpolarization of the 

muscle or neuronal cell membrane, consequent paralysis of the nematode and its 

expulsion(18). 

 

 

Anthelmintic resistance 

 

 

Anthelmintic resistance (AR) occurs when parasite susceptibility declines vis-à-vis a drug 

dose that would normally eliminate most parasites(19). In Mexico, AR has been reported 

in sheep herds in the states of Tabasco, Chiapas, Yucatán, Campeche, Tlaxcala, Puebla 

and Veracruz, and is also known to affect cattle(20,21,22,23). Some GINs are known to have 

developed anthelmintic detoxification mechanisms(24,25). In nematodes, AR can alter the 

target protein, as well as transport xenobiotic molecules such as AH via transmembrane 

proteins (P-glycoproteins, P-gp), both of which play roles in multi-drug resistance(16). In 

Mexico, changes have been reported in the relative expression of P-gp genes associated 

with AR in isolates from ivermectin (IVM)-resistant and IVM- susceptible H. contortus. 

This suggests they may function as an effective reference germplasm in the design of 

study strategies for AR diagnosis and control methods aimed at maintaining drug toxicity 

in the field and controlling GIN. Resistance develops in response to the interaction 

between many factors, including GIN population density, treatment time and weather 

conditions, among others, which influence selection of resistance genes(17,26). 
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Environmental consequences of anthelmintic drug use 

 

 

Most AH are eliminated in the feces and urine. Some, such as ML, are not fully 

biotransformed inside the animal and when eliminated into the environment can pose a 

risk to non-target microorganisms, such as beneficial arthropods(27) or dung beetles(28). 

They can also pollute groundwater and generate significant imbalances in aquifer 

ecosystems. Macrocyclic lactones such as abamectin are extremely toxic to the planktonic 

crustacean Daphnia magna and highly toxic to other daphnids and fish(29). When in soils, 

they can harm beneficial organisms such as arthropods, including flies(30). 

 

 

Public health risks from anthelmintic drugs 

 

 

Excessive use of AH in cattle can contaminate meat, milk and its by-products, 

constituting a public health risk(31,32). They are widely used and thus pose a serious threat. 

For instance, in Ireland almost 60 % of dairy herds receive preventative administration of 

AH(33), while in Brazil 17.8 % of milk samples were reported to contain IVM residues(34). 

A study of bulk tank milk in Minas Geráis, Brazil, found it to contain amino-

benzimidazoles (55.42 %), levamisole (53.57 %), avermectins (60.24 %), thiabendazole 

(67.47 %),  moxidectin  (73.49 %),  triclabendazole  (45.78 %)  and  benzimidazoles  

(6.02 %)(35). Research is still needed in Mexico to quantify AH residues in various 

products and verify their safety(36). 

 

 

Alternative methods for nematode control in livestock 
 

 

Selective deparasitization (FAMACHA©) 

 

 

The FAMACHA© method is a selective deworming strategy based on degree of animal 

anemia quantified through the paleness of the lower eye mucus membrane as determined 

using a reference card. The card shows five colors ranging from intense red to pale or 

white, representing a 1-to-5 scale, and is used to measure coloration of the mucus 

membrane(37). When applied in tandem with body condition measurement, stool-

parasitological examination, and fecal egg count (FEC), it helps in developing a 

deworming criterion(38). The FAMACHA© method is very useful in identifying the risk 

of H. contortus infection in small ruminants(39,40), but must be applied by a trained 

professional. 
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Grazing management 

 

 

Under tropical conditions, rotational grazing (RG) involves grazing an area for 3.5 d and 

then letting it rest for 31 d. This considerably reduces GIN in sheep and goats(41). In 

India, a decrease in FEC of up to 55.52 % has been reported when using RG in comparison 

to continuous grazing (CG)(42). Another study reported up to a 48.1 % reduction in the 

L3 population in feces, as well as better weight gain, in animals under a RG scheme 

compared to those under CG(43). 

 

 

Protein diet nutritional strategy 

 

 

Iso-energy and iso-protein diets have been proven to help prevent and control some 

parasites(44). The protein and energy levels in diets contribute to controlling GIN, and 

improve macro- and micronutrient quality and quantity(45), consequently strengthening 

immunity against nematodes(46). 

 

 

Using plants with anthelminthic activity 

 

 

Legumes have high contents of secondary metabolites (e.g. condensed and hydrolysable 

tannins, flavonoids and other groups of polyphenols) which are an alternative for GIN 

control(47-50). Some legume species in Mexico have shown efficacy against GIN. For 

example, in vitro and in vivo studies of Leucaena leucocephala show it to have an AH 

effect against GIN in cattle(51,52). Other legumes such as acacias contain hydroxycinnamic 

acid derivatives in their leaves, which exert powerful in vitro ovicidal activity against H. 

contortus, H. placei and Cooperia punctata(53,54). In an in vivo study using acacia leaves, 

goats artificially infected with H. contortus and administered 10 % dehydrated leaves in 

their diet exhibited up to a 70 % reduction in elimination of parasite eggs(55). The pods of 

Acacia farnesina contain flavonoids such as narigenin 7-O-(6″-galloylglucoside), known 

to be ovicidal and larvicidal against H. contortus(56). Both L. leucocephala and A. 

farnesina also constitute protein-rich forages for ruminants(57,58). The nuts of the legume 

Caesalpinia coriaria exhibit antimicrobial and anthelmintic activity in public health and 

livestock conditions(59,60,61). Gallic acid and a tannin derivative isolated from C. coriaria 

fruit were found to exercise an AH effect against GIN eggs in cattle(62). When included 

in complete diets for sheep and goats, this same fruit was found not to affect intake at a 

diet inclusion level of 2 % for sheep and 10% for goats(63,64). A bio-directed study of the 

legume tree Prosopis laevigata identified and isolated the flavonoid isorhamnetin which 

was found to be a potent in vitro nematicide against H. contortus(65). 
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Vaccination 

 

 

An effective alternative treatment for nematodes in ruminants under grazing conditions 

are antigens (ag) from autochthonous isolates of highly pathogenic nematodes, which can 

exhibit potential immunoprotective activity(66). For example, analysis of ag from 

Haemonchus spp. is vital in development of recombinant vaccines against the main 

GINs(67). Vaccines against GIN are increasingly sought after as research begins to focus 

on more sustainable approaches to GIN control(68). An outgrowth of this research has been 

the first vaccine (Barbervax) against H. contortus, which was derived from surface ag 

isolated from the intestinal lining of nematodes, and provides partial protection against 

this pathogen. Another study evaluated the proposed immunization of lambs with a 

recombinant somatic ag (rHC23) versus H. contortus, finding that it reduced egg counts 

by 70 to 80 %(69). A separate study using goats infected with H. contortus analyzed the 

efficacy of a protein known as transthyretin, derived from H. contortus excretion and 

secretion products (HcTTR). Two 500 μg doses of recombinant HcTTR reduced FEC by 

63.7 % and postmortem parasite load by 66.4 %(70). 

 

 

Genetic selection for resistant animals 

 

 

Genetic resistance (GR) is variation in immune response present in a population of 

animals with the ability to control an infection or disease. It is highly dependent on the 

adaptive immune response and has a specific origin linked to an ag(71). Resistance to GIN 

infections has been reported in various sheep breeds. It is mediated by the adaptive 

immune response after reinfection with a specific pathogen and is related to the animals’ 

genetic profile in that it is a trait that can be inherited by offspring from parents(72). 

Genetic resistance to GIN is therefore a trait that can be pursued in small ruminant 

production aimed at controlling this problem. The effects of resistance and resilience in 

this phenotype against GIN infection can be enhanced in future generations by evaluating 

and selecting breeds and/or crosses of resistant animals for breeding programs(71,73,74). 

Selection of animals with a resistant phenotype requires evaluation and measurement of 

various standards relating to parasitological, immunological and pathogenicity 

parameters. These include determination of hpg, body condition, hematocrit percentage, 

antibody (IgA, IgE) concentrations, and degree of eosinophilia, among others(71,73,74,75). 

Once a resistant phenotype has been selected it can function as a reference point for 

improving progeny resistance in rearing programs. Resistant offspring will harbor fewer 

adult nematodes, reducing elimination of eggs into the environment and consequently 

reducing L3 contamination of pastures(73,74). Lower parasitosis rates in a herd will 

improve production parameters, potentially lessening dependence on AH use and 

decreasing AH-caused damage to beneficial organisms in pastures(72,76,77). In small 

ruminants, genetic improvement is an alternative medium-term control strategy for GIN 
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parasitosis. Selection of genetic markers and identification of genomic positions (loci) in 

the chromosomes linked to a resistant phenotype are vital to understanding the 

mechanisms of the immune response associated with GIN resistance(71,76,77,78). 

 

 

Biological control 

 

 

Nematophagous fungi (NF) are among the principal natural enemies of nematodes. In 

addition to being saprobes, they are parasites or facultative predators of nematodes(79). 

The most promising NF in cattle nematode control is Duddingtonia flagrans. This fungus 

produces a large amount of chlamydospores that can be incorporated into feed, or they 

can be administered orally to animals in an aqueous suspension(80,81,82). They pass through 

the digestive tract and once in the feces they capture nematode larvae and feed on them, 

reducing their population by 70-90 %(82-85). Decreasing the larvae population in feces 

reduces infections and re-infections(86). Studies by INIFAP researchers have shown this 

strategy to be highly effective in reducing feces larvae populations in cattle and sheep 

under different production conditions, and in different regions of Mexico. One example 

is a study of an organic milk production unit in the Malpaso region of the state of 

Chiapas(80). There are currently two products available based on D. flagrans 

chlamydospore formulations: BioWorma in Australia(82), and Bioverm in Brazil(87). In 

Mexico, the CENID-SAI of the INIFAP is currently negotiating an agreement with a 

company to market a product based on chlamydospores from a Mexican D. flagrans strain 

for livestock applications. 

 

 

Comprehensive nematode control 

 

 

Adequate GIN control requires an understanding of where nematode parasites are found 

based on their lifecycle. In livestock they are found principally in three areas. In animals 

they can be found in the gastrointestinal system as histotrophic larvae (L4), pre-adult 

stages (L5) and adults, in addition to eggs from females. The feces contain eggs, L1 and 

L2 (pre-infectious) stages, and the L3 (infectious) stage. Soils and pastures harbor L3. 

Based on this information a comprehensive control strategy can be developed that focuses 

on these sites (Figure 1) in which different control tools are applied in a coordinated, 

synergetic approach for more efficient GIN control. 

 

 

 

 



Rev Mex Cienc Pecu 2021;12(Supl 3):186-204 

 

193 

Figure 1: Diagram representing integrated application of the main gastrointestinal 

nematode control methods in sheep focused on parasite developmental targets within 

the endogenous and exogenous phases of the biological cycle 

 

 

Conclusions 
 

 

Scientifically proven control measures exist that are effective in herd-level nematode 

infection. When implemented in a comprehensive way they can improve animal health 

and herd productivity, while avoiding excessive AH use. The comprehensive nematode 

control method also reduces the occurrence AR, contributing to a sustainable approach to 

nematode control. 

 

 

Challenges and outlook for nematode control in livestock in 

Mexico 
 

 

In the future, parasitologists will face a number of challenges in developing control 

strategies that move away from widespread AH use. The wide variability in parasite 

population dynamics largely responds to changes in climate(88). The spread of AR and 

resulting progressive inefficacy of AH are a growing threat in livestock production 

systems. Strategies are needed that block or reverse the adaptive genomic mechanisms 

behind AR(89). New immunoprotective ag´s based on recombinant technologies can be 

explored to improve animal immune system effectiveness(69,70,90). Sustainable 
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technologies can also play a role in control strategies(91), especially those involving plants 

and their metabolites with nematocidal activity(92,93). Application of NF in nematode 

control in cattle and small ruminants is promising(80,81,82). In Mexico, this method needs 

to be developed to a point where it can be marketed and then promoted to producers. 

Nanoparticles and metabolites from NF are also promising possibilities that need more 

extensive research(94), since they are potentially effective additions to the arsenal of 

nematode control strategies(95,96). 

 

 

Contributions to the study of nematodiasis in livestock 
 

 

Researchers in Mexico have contributed to better understanding and addressing nematode 

infection in livestock. One area of particular emphasis has been anthelmintic resistance, 

including the use of molecular tools for identification of resistance marker genes against 

anthelmintic drugs(17,21,82). Nematode transcriptomes have also been explored as part of a 

new perspective on the possible reversal of anthelmintic resistance in parasites, as have 

genetic and molecular detection of animals resistant to parasites(78,80). Important research 

is also being done on plants, and metabolites derived from them, with nematocidal 

activity against livestock parasites. This has generated data that will help to establish the 

use of plants with antiparasitic activity in livestock production(61,66,72). A sustainable 

method of nematode control in ruminants has been developed using a Mexican strain 

(FTHO-8) of the NF Duddingtonia flagrans, a natural predator of nematodes. Resistance 

spores, or chlamydospores, from this NF have been incorporated into “cookies” or 

“pellets” for cattle. When ingested they pass through the digestive tract to the feces where 

they germinate, colonize the feces and form mycelia traps to capture, kill and feed on 

nematodes, thus interrupting the biological cycle of nematodes(92). This is another 

sustainable method that has been successfully tested under different environmental and 

animal handling conditions(87,88,91,93). Cutting-edge research is also in progress on the 

antiparasitic properties of edible fungi, with promising results such as identification of 

bioactive metabolites that control nematodes(97). 
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