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Abstract: 

In order to define the SNP panel for paternity tests in cattle, genotypes were analyzed in three 

breeds (number of SNPs evaluated and individuals sampled): Hereford (HER; 202; 1317), 

Brangus (BRA; 217; 3431) and Limousin (LIM; 151; 8205). Within breed, SNPs with a 

percentage of genotyped individuals (PGI) less than 90 %, with Hardy-Weinberg 

disequilibrium (HW; P<0.05), with allele frequency less than 0.10 or less and with linkage 

disequilibrium, where the correlation between genotypic frequencies was greater than 0.25, 

were discarded. The levels of expected (He) and observed (Ho) heterozygosity, polymorphic 

information content (PIC) were estimated; as well as the Shannon index, the fixation index 

and effective population size (Ne). The combined exclusion probability (CEP) and identity 

probability (CIP) were calculated. The final panel was 121, 188 and 113 SNPs in HER, BRA 

and LIM, respectively; the main source of discard was HW followed by PGI. Levels of Ho 

and He were above 0.40; CIP was greater than 0.32 and Ne presented estimates above 181.3. 

The results for CEP were higher than 0.999999; for CIP, they were below 1 x 10-20. 
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In Mexico, genetic evaluations (GEEV) in beef cattle have been carried out since 2001; 

around 25 breeds, arranged in national associations of registered cattle breeders, GEEVs 

combine the genealogical and productive information contained in the registration books(1). 

Genealogical information, which makes up the genealogical record of breed purity or degrees 

of purity, defines the parentage relationships of the entire population through the pedigree of 

each individual. Errors in the veracity and integrity of the pedigree have effects on the 

certainty of breed purity; in the definition of founding ancestors and assignment of 

individuals to generations, as well as in the calculations of the levels of consanguinity and 

parentage(2,3,4). In GEEV, errors in genealogical information have consequences in the 

estimation of variance components and genetic parameters, as well as in the prediction of 

genetic values and hierarchization of sires; consequently, they also affect the response to 

genetic selection and progress(5,6,7,8). 

 

Genetic markers (GEMA) express the polymorphism of DNA, their evolution and use have 

strengthened animal genetic improvement programs(9,10,11). In cattle, paternity tests have 

evolved with the development of GEMAs(12); the International Society for Animal Genetics 

(ISAG) initially proposed a panel of 121 SNPs (Single-Nucleotide Polymorphism) developed 

in Bos taurus breeds, later, 100 SNPs derived from Bos indicus breeds(13,14) were added. In 

Mexico, paternity tests have been implemented in the Brangus, Limousin and Hereford 

breeds based on the SNP panel proposed by ISAG; however, it is necessary to validate the 

SNP panel by populations, since the functionality and veracity of a GEMA in genetic tests 

depends on the Hardy-Weinberg equilibrium, the possible linkage disequilibrium, the 

polymorphic information content, among other components; in addition, in a set of GEMA, 

the test power is validated by the exclusion probability(14,15). 

 

In this regard, studies have been carried out validating the SNP panel developed by ISAG to 

be used in cattle paternity tests in Brazil(16), Argentina(17), China(18,19), the United States(20,21), 

Japan(22.23) and Europe(24,25,26). Based on the above, the objectives of this study were to 

validate the SNP panel defined by the International Society for Animal Genetics for genetic 

tests in Mexican cattle populations. 
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The genotypes of SNP for cattle were analyzed: Brangus (BRA), Hereford (HER) and 

Limousin (LIM); Table 1 describes the database analyzed. In a first edition, a quality control 

of the database was carried out; the information of the individual and the sample was verified, 

as well as Mendelian conflict, duplicate and identical genotypes by state. The panel evaluated 

in each breed is a subset of the general panel proposed by ISAG; for LIM, the processing of 

the samples was carried out by the Labogena laboratory based on the SNPs used in France; 

for the other breeds, the process was carried out by the Neogen GeneSeek laboratory with 

the set of SNPs used in the US. The analyses were developed within breed in four stages: 

 

1. Assessment of the percentage of individuals (call rate) with identified genotype 

(PGI); estimation of allelic and genotypic frequencies, as well as Hardy-Weinberg (HW) 

equilibrium analysis. 

2. Discarding the SNPs with HW disequilibrium (P< 0.05) and PGI less than 90 %, the 

possible linkage disequilibrium (LD) was analyzed based on the correlation (r2) between 

genotypic frequencies through SNP, the expected (He) and observed heterozygosity (Ho), 

the polymorphic information content (PIC), the Shannon index (SI) and the fixation index 

(FIS) were estimated. With the average r2 and adjusted for the sample size, the effective 

population size (Ne) was estimated, based on the Waples approach(27). 

3. A panel of SNPs by breed was integrated, discarding SNPs with HW disequilibrium 

(p< 0.05), with lesser allele frequency (LAF) equal to or less than 0.10, with LD(26) where r2 

was greater than 0.25 and PGI less than 0.90 %. 

4. With the subset of SNPs for each breed, they were sorted in descending order by PIC 

and the exclusion probability (EP) was calculated in three modalities(28,29,30): (a) with one 

candidate parent and another known parent, to exclude the candidate parent [EP1 = 1 – 

2*∑ 𝑝𝑖2𝑛
𝑖=1  + ∑ 𝑝𝑖3𝑛

𝑖=1  + 2*∑ 𝑝𝑖4𝑛
𝑖=1  – 3*∑ 𝑝𝑖5𝑛

𝑖=1  – 2*(∑ 𝑝𝑖2𝑛
𝑖=1 )2 + 3*∑ 𝑝𝑖2𝑛

𝑖=1 *∑ 𝑝𝑖3𝑛
𝑖=1 ]; 

(b) given a candidate parent and the progeny, to be able to exclude the relationship between 

them [EP2 = 1 – 4*∑ 𝑝𝑖2𝑛
𝑖=1  + 2*(∑ 𝑝𝑖2𝑛

𝑖=1 )2 + 4*∑ 𝑝𝑖3𝑛
𝑖=1  – 3*∑ 𝑝𝑖4𝑛

𝑖=1 ]; and, (c) with two 

candidate parents, exclusion of one or both [EP3 = 1 + 4*∑ 𝑝𝑖4𝑛
𝑖=1  - 4∑ 𝑝𝑖5𝑛

𝑖=1  – 3*∑ 𝑝𝑖6𝑛
𝑖=1  

– 8*(∑ 𝑝𝑖2𝑛
𝑖=1 )2 + 8*(∑ 𝑝𝑖2𝑛

𝑖=1 )*( ∑ 𝑝𝑖3𝑛
𝑖=1 ) + 2*(∑ 𝑝𝑖3𝑛

𝑖=1 )2. The combined exclusion 

probability for each situation was (CEP= 1 - (1 – EPi). In addition, two identity probabilities 

(IP) were estimated(31): the probability of identity of two individuals taken at random, present 

identical genotypes [IP1 = ∑ 𝑝𝑖4𝑛
𝑖=1  + ∑ ∑ (2𝑝𝑖𝑝𝑗)2𝑛

𝑖=1
𝑛
𝑖=1 ]; and, the probability of identity 

for two full siblings, taken at random, present identical genotypes [IP2 = 0.25 + 

(0.5*∑ 𝑝𝑖2𝑛
𝑖=1 ) + (0.5*(∑ 𝑝𝑖2𝑛

𝑖=1 )2) – (0.25*∑ 𝑝𝑖4𝑛
𝑖=1 )]. The combined identity probability 

(CIP) for each situation was calculated with the product of the probabilities of identity of 

each marker. The analyses were performed with the programs FSTAT(32), LDNE(33) and 

GenAlex(34). 

 

Table 1 summarizes the process of selecting and discarding SNPs by breed, as well as the 

structure of the final panel. The total number of SNPs removed by breed, as a percentage of 
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the total evaluated, fluctuated from 13.4 % (BRA) to 40.0 % (HER), where the main cause 

of discarding was the HW disequilibrium (P<0.05). In the process of discarding SNPs, no 

trend or association between markers was observed, the set of SNPs separated by breeds was 

different. The final number of SNPs per breed fluctuated from 113 (LIM) to 188 (BRA), 

which are within the guidelines of ISAG(13), which stipulates that the panel per breed must 

be made up of at least 100 SNPs. 

 

Table 1: Definition of the SNP panel by breed based on discard criteria 

Breed N SNPn PGI HW LAF LD SNPf 

Herford 1,317 202 41 30 8 2 121 

Brangus 3,431 217 2 19 2 6 188 

Limousin 8,205 151 9 28 1 0 113 

N= number of individuals sampled. SNPn= number of SNPs evaluated. PGI= number of SNPs removed due 

to percentage of individuals with identified genotypes less than 90 %. HW= number of SNPs discarded for 

presenting Hardy-Weinberg disequilibrium (P<0.05). LAF= number of SNPs separated due to lesser allele 

frequency, less than 0.10. LD = number of SNPs discarded due to linkage disequilibrium, since the correlation 

between frequencies was greater than 0.25. SNPf= total SNPs that make up the panel by breed. 

 

Table 2 presents the results for Ho, He, PIC, FIS and Ne. No differences between Ho and He 

are observed, which reflects that the selected SNP set is in HW equilibrium. For SI, the results 

in all three populations were below one, which can be associated with homogeneity in the 

populations and the uncertainty to predict the probability of assigning an individual to the 

population that will belong reduces. For FIS, all results tend to zero, indicating a stability in 

the relationship of homozygotes and heterozygotes. With Ne estimates, within the framework 

of the HW equilibrium, the expected increases in consanguinity (ΔF = 1 / 2Ne) per generation 

range from 0.08 to 0.27 %. He, Ho, and PIC levels determine whether or not a genetic marker 

is informative and its potential for use in genetic variability studies; however, the 

hierarchization or ordering of SNPs by the capacity of use may be different between 

populations. 

 

Table 2: Indicators of genetic variability (average values) based on the SNP panel selected 

for each breed 

Breed Ho He PIC SI FIS Ne 

Herford 0.416 0.419 0.328 0.607 0.008 181.3 

Brangus 0.433 0.434 0.337 0.623 0.002 246.9 

Limousin 0.451 0.452 0.348 0.643 0.004 629.8 

Observed (Ho) and expected (He) heterozygosity. PIC= polymorphic information content. SI= Shannon 

Index. FIS= fixation index. Ne= effective size. 

 

With the total number of SNPs selected in each breed, the results for CEP in the three 

modalities were greater than 0.999999; for CIP, they were below 1 x 10-39 and 1 x 10-20 in 
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PI1 and PI2, respectively. Table 3 describes the results for the alternate forms of CEP and 

CIP, partially achieved with 50 SNPs. Given the genetic structure of the populations and the 

forces that affect the genetics of populations, the conformation and arrangement of a panel 

of SNPs to verify paternity in cattle can have different dimensions and probability values: 

Heaton et al(20), with a panel of 32 SNPs by 17 breeds, published a CEP greater than 0.994 

and a CIP of 1.9 x 10-13; Van Eenennaam et al(21), with 28 SNPs, LAF greater than 0.40 in 

commercial herds, obtained a CEP of 0.956; Hara et al(29), with 29 SNPs for a breed native 

to Japan reported a CIP of 2.73 x 10-12 and a CEP of 0.96929 to 0.99693. In other related 

studies, Werner et al(24) published a CEP greater than 0.9999 and a CIP of 1 x 10-13 with 37 

SNPs. Fernández et al(17), in Angus with an arrangement of 116 SNPs, reported combined 

non-exclusion probabilities (CNEP = 1 – CEP) in the range of 2.1 x 10-4 to 1.4 x 10-9, as well 

as CIP of 4.1 x 10-15. Panetto et al(16), for the Sindhi breed from Brazil, with 71 SNPs where 

LAF was higher than 0.35, published CNEP of 1 x 10-8. Zhang et al(18), in Simmental cattle 

with 50 SNPs and LAF greater than 0.40, reported CEP greater than 0.9989; Hu et al(19), in 

crossbred cattle from China, with 50 SNPs where the average LAF value was 0.43, obtained 

CEP from 0.99797 to 0.999999. 

 

Table 3: Exclusion and identity probability values, obtained with 50 SNPs within the total 

panel selected by breed 

Breed CEP1 CEP2 CEP3 SNPi CIP1 CIP2 

Hereford 0.99996 0.99831 0.99999 113 1.0E-21 8.2E-12 

Brangus 0.99996 0.99861 0.99999 91 6.2E-22 5.7E-12 

Limousin 0.99996 0.99849 0.99999 97 7.7E-22 6.6E-12 

CEP1= combined exclusion probability, with a candidate parent and another known parent. CEP2= combined 

exclusion probability, given a candidate parent and progeny. CEP3= combined exclusion probability with two 

candidate parents. CIP1= combined identity probability for two individuals taken at random. CIP2= combined 

identity probability, for two full siblings taken at random. SNPi= number of SNPs required to obtain a value 

greater than 0.999999 in the probabilities of exclusion. 

 

For Brangus, Hereford and Limousin cattle, the number of SNPs that make up the panel for 

paternity tests was greater than 100; selected based on the criteria associated with genetic 

variability and population structure, with values of exclusion probability greater than 

0.999999 and identity probability below 6.6 x 10-12. 
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