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Abstract: 

Hair sheep are essential for meat production in tropical regions, where feed efficiency has 

been little evaluated. Feed consumption represents more than 70 % of the costs. Therefore, 

animals with high feed efficiency could increase the profitability of the production system. 
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There exist tools that help select individuals with increased feed efficiency without 

compromising the quality of the product. This review aims to identify these genetic-

molecular and statistical tools, such as residual feed intake (RFI) and residual intake and gain 

(RIG). Previous studies report differences ranging from 9 to 30 % in the dry matter intake 

(DMI) of efficient and inefficient animals, maintaining a similar daily weight gain (DWG) 

using the RFI index. Moreover, the DMI is similar using the RIG index. Although, the DWG 

of efficient animals is higher by up to 50 g d-1, reducing feed conversion by one kg. This 

difference is attributed to a group of genes associated with feed efficiency (Adra2a, Gfra1, 

Gh, Glis1, Il1rapl1, Lep, Lepr, Mc4r, Oxsm, Pde8b, Rarb, Ryr2, Sox5, Sox6, and Trdn). 

These genes could be used to select hair sheep with high feed efficiency, considering the 

genes associated with meat quality (Capns1, Cast, Dgat1, Fabp4, Igf-i, Lep, Mstn, and Scd).  
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Introduction 
 

 

The global sheep population in 2017 consisted of 1,202 million heads. Approximately 74 % 

of this population is distributed between Asia and Africa (42.25 and 31.7 %, respectively). 

The remaining 26 % is located in the rest of the continents. Although America has the 

smallest sheep population (6.76 %), its average carcass weight is higher (18.6 kg) than that 

of the other continents, only surpassed by Oceania (21.6 kg)(1). 

 

In Mexico, sheep production is one of the livestock activities with more presence regarding 

territorial distribution. According to the preliminary figures of 2018, the sheep population 

reached 8'683,835 heads(2); approximately 11 % of this population in the American continent, 

distributed in around 53,000 production units. About 53 % is located in the center of the 

country, 24 % in the south-southeast, and 23 % in the north(3). Pelibuey is one of the most 

numerous breeds; it is used as breeding stock due to its maternal ability, high prolificacy, 

rusticity, resistance to parasites, and great adaptation to the various climatic conditions in the 

country(4). 

 

Moreover, feed intake is one of the most important factors in intensive meat production 

systems, representing more than 70 % of total production costs(5). Therefore, the selection of 
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animals with high feed efficiency, those that require a lower feed intake to maintain their 

performance or increase their production with a similar intake, could increase the unit’s 

profitability(6). Reducing feed costs would help keep profitable prices within a fluctuating 

agricultural supply market and competitiveness in the global market.  

 

Traditionally, the meat production livestock industry has used feed conversion (FC) to assess 

feed efficiency(7). Nonetheless, this measure is questionable because the DMI is highly 

correlated with body size and production level(8); this tends to select animals with high DWG. 

However, animals with high DMI are also selected, which increases production costs(7).  

 

Taking a different approach, other authors have defined feed efficiency as the animal capacity 

to reach a specific weight with a lower DMI(9). Ruminants' efficiency is low compared to 

other species. However, they can transform nonfood resources for humans (forages and non-

protein nitrogen) into high-quality food (animal protein)(7). 

 

Consequently, several tools have been sought to help explain, predict, and select individuals 

with greater efficiency in feed utilization and energy intake. Residual feed intake (RFI) being 

among the most used ones(9,10). RFI is defined as the difference between the real and the 

expected feed intake for a specific weight and production level during an established 

period(8,11). This tool identifies the animals with the greatest efficiency of feed utilization, 

improving the herd's genetics and reducing the production costs of each increased kilogram 

of live weight(8). Koch et al(9) proposed the Residual Gain (RG) index; this tool estimates the 

expected gain for a specific production level and identifies the animals with the highest 

weight gain rates. 

 

A new indicator of feed efficiency was recently proposed, the Residual Intake and Gain (RIG) 

index. This indicator retains the selection characteristic of RFI and RG, which are 

independent of body weight. RIG selects the animals with the greatest DWG and the lowest 

DMI since it correlates negatively with the DMI and positively with the DWG(12). 

 

The meat industry is not only interested in the efficiency of feed utilization but also the 

quality of the final product. Meat quality includes various traits, such as physicochemical 

attributes (tenderness, color, fat content, intramuscular, and water holding capacity), 

palatability factors (flavor, juiciness, and smell), and food safety characteristics(13). These 

quality traits influence the decision-making of the consumer and the meat processing 

industry(14). On this matter, several studies have used RFI to determine the effect of feed 

efficiency on meat quality. They have reported that selecting efficient Angus bovines (low 

RFI) does not hurt meat quality(15,16). However, recent studies in Nelore cattle have reported 

conflicting results. Some authors observed that efficiency does not affect meat quality and 

the calpain system(17,18), yet other studies report the opposite. Therefore, animals with low 
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RFI tend to have tougher meat(19). This undesirable characteristic is regulated by protein 

turnover and specific enzymes (especially those in the calpain system), which carry out the 

muscle postmortem proteolysis(20). 

 

Furthermore, previous reports mention that proteolysis is related to the maintenance energy 

requirement (MER); a high protein degradation rate is associated with a higher MER(21). 

Additionally, the most efficient animals have a lower maintenance metabolizable energy 

requirement(17,21). Thus, in Nelore cattle, the most efficient animals have a low protein 

degradation rate(22), which is associated with a higher shear force at different maturation 

times (0 d= 4.50 vs 4.00, 7 d= 4.22 vs 3.61, 21 d= 3.27 v. 2.69 kg/cm2), low myofibril 

fragmentation index (37.0 vs 42 %), and high content of soluble collagen (17.7 vs 14.9 %), 

resulting in lower meat quality(19).  

 

Moreover, the development of molecular genetics, sequencing, and selective gene 

amplification techniques has increased the detection of genes that have a marked effect on 

traits of interest, i.e., feed efficiency and meat quality. This allows the detection of the 

genomic sequences associated with these genes and the establishment of selection programs 

based on molecular markers(23).  

 

A genetic marker is a specific DNA sequence with a known location in a chromosome; this 

sequence either has a specific function or is associated with the phenotypic expression level 

of a trait(24). The use of genetic markers helps with problems faced during traditional selection 

by selecting genetically superior individuals(25). Furthermore, the markers can predict 

improvement values for the individuals selected at birth more precisely than the classic 

pedigree index, reducing the generation interval(23). Therefore, this study aimed to review the 

feed efficiency indexes and their relationship with meat quality and the genes associated with 

these traits in hair sheep.  

 

 

Feed efficiency indexes 
 

 

The RFI and RG indicators were proposed by Koch et al(9) after observing that feeding affects 

the maintenance of live weight and daily weight gain. They suggested that feed intake can be 

adjusted to body weight and weight gain, dividing it into two components: 1) The feed intake 

expected for a specific performance or production level and 2) A residual portion. The 

residual portion of feed intake could be used to identify animals that deviate below their 

expected level of feed intake (negative RFI); this allows comparing animals with different 

production levels during the measurement period.  

 



Rev Mex Cienc Pecu 2021;12(2):523-552 

 
 

527 

The RFI has been used as a selection criterion in beef cattle breeding programs. Heifers with 

low RFI are more efficient regarding feed utilization than those with a high RFI(26); 

additionally, their progeny tend to behave more efficiently(27). The estimated heritability of 

this characteristic is moderate (0.27-0.58) and independent from growth and production 

level(9,28,29,30), and it has no adverse effect on other economically important characteristics, 

such as meat quality(15).  

 

Furthermore, RFI reduces livestock's environmental impact because animals with low RFI 

tend to produce lower amounts of methane (CH4) per unit of consumed dry matter due to 

their lower DMI and best energy use efficiency(31,32,33). Therefore, RFI is one of the carbon 

dioxide (CO2) and CH4 mitigation strategies of livestock.  

 

The main advantages of using RFI as a selection criterion are improved feed efficiency(8,34) 

and increased productivity in the breeding sector, reducing the area used per animal unit(35). 

 

The novel RIG index improves feed efficiency and identifies animals with greater growth 

rates and lower fat proportion without affecting meat and carcass quality, reducing 

confinement and slaughter times of animals because they reach their commercial weight at 

early ages(36).  

 

The studies that involve the RFI and RIG indexes have been mainly carried out in cattle, pigs, 

and poultry. These indexes have also been evaluated in temperate climate sheep. Although 

some studies have included Brazilian hair sheep crosses, the Santa Inés and Pantaneira breeds 

stand out(5,36,37,38); there is also a study in Dorper sheep(39) (Table 1 and 2). In Mexico, this 

tool is just starting to be implemented, so there are few studies; there is only one previous 

study in the Rambouillet breed(40). Therefore, the behavior of hair sheep is still unknown 

(Table 1). 

 

 

Estimating the RFI and RIG indexes 

 

 

The RFI determines the expected DMI and is estimated through a multiple linear regression 

equation as a function of mean metabolic weight (MMW) and DWG. 

The model used by Koch et al(9): 

 

Yi =  β0 + β1GDPi + β2PMMi + εi 

Where: 

𝐘𝐢= Dry matter intake of the i-th animal. 

𝛃𝟎= Regression intercept. 
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𝛃𝟏𝐆𝐃𝐏𝐢= partial regression coefficient of dry matter intake in the i-th DWG of the animal. 

𝛃𝟐𝐏𝐌𝐌𝐢= partial regression coefficient of dry matter intake in the i-th mean metabolic 

weight of the animal. 

𝛆𝐢= residual error in the dry matter intake of the i-th animal. 

 

Moreover, RG helps estimate the expected DWG through a multiple linear regression as a 

function of DMI and MMW. 

                                                                                                                                

Where: 

Yi= Weight gain of the i-th animal. 

𝛃𝟎= Regression intercept. 

𝛃𝟏𝐂𝐌𝐒𝐢= partial regression coefficient of the DWG of the i-th DMI of the animal. 

 

𝛃𝟐𝐏𝐌𝐌𝐢= partial regression coefficient of the DWG of the i-th MMW of the animal. 

𝛆𝐢= residual error in the DWG of the i-th animal. 

 

RIG is calculated with the two previously described models using the following equation: 

𝐺𝐼𝑅(𝐶𝐴𝑅 ∗ −1) + 𝐺𝑅. The index requires prior standardization (Mean = 0 and Standard 

Deviation = 1) of the RFI and RG.  

 

After determining the RFI, animals are classified into high (>0.5 SD above the mean, higher 

feed consumption than expected for maintenance and production; thus, lower efficiency), 

medium (±0.5 SD from the mean), and low RFI (<0.5 SD below the mean, lower feed 

consumption; thus, higher efficiency)(41). The same categorization procedure is used to 

determine the RIG groups. However, high RIG indicates greater efficiency, and low RIG 

means lower efficiency.   

 

 

Intervening physiologic factors 

 

 

There are numerous and interrelated physiologic mechanisms associated with higher feed 

utilization efficiency. However, they have not been completely elucidated. Richardson and 

Herd(42) synthesized the results of a series of experiments in Angus cattle selected divergently 

for RFI. They estimated the proportion of the variation in RFI that explains the following 

processes: protein turnover, tissue metabolism and stress (37 %), digestibility (10 %), 

increase of heat and fermentation (9 %), physical activity (9 %), body composition (5 %), 

and feeding patterns (2 %). The mechanisms responsible for more than 25 % of the variation 

in RFI are not yet known. The physiologic processes associated with the variation in feed 

utilization efficiency have been grouped into five categories: 1) Feed intake capacity, 2) Feed 

𝑌𝑖 = 𝛽0 + 𝛽1൫𝐶𝑀𝑆𝑖൯ + 𝛽2൫𝑃𝑀𝑀𝑖൯ + Ԑ𝑖  
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digestion, 3) Metabolism (anabolism and catabolism), 4) Heat production related to digestion 

and physical activity, and 5) Thermoregulation(30). 

 

Knowing the biological processes involved and the degree to which they contribute to the 

feed efficiency of hair sheep is crucial since information is scarce in these breeds. Therefore, 

it is necessary to carry out studies that help understand how these mechanisms favor this 

behavior, which would allow the selection of more efficient and productive animals. 

 

 

Feed intake and productive performance 

 

 

Voluntary feed intake is regulated by a complex interaction between neuroendocrine control 

mechanisms and the physicochemical properties of feed; this interaction changes according 

to the physiologic state of the animal(43). Moreover, feed intake directly correlates with the 

energy used for digestion; at higher the intake, the higher the energy expenditure. This results 

from an increase in digestive organ size and the energy used in the tissues of these organs(30). 

This energy expenditure is known as heat increase during fermentation; in ruminants, it 

represents approximately 9 % of the metabolizable energy intake(44). 

 

Most studies (Table 1) indicate that sheep with low RFI show the same DWG as animals 

with high RFI(5,6,38-40,45-55); animals with low RFI have a better energy use efficiency(33). 

However, Rocha et al(37) reported significant differences in DWG, making energy use 

efficiency more noticeable. In all the studies, DMI was lower on the most efficient animals, 

with a difference ranging from 9 to 30 % compared with those less efficient. Therefore, it is 

expected that the more efficient animals show a better FC (Table 1). 

 

Previous studies in sheep, using the RIG index(5,36,38), have shown that sheep classified with 

high RIG have a lower DMI, higher DWG, lower FC, and higher feed efficiency (FE) (Table 

2). Although the difference in DMI is not as high as that observed with RFI, the DWG differs 

by up to 50 g d-1
. Moreover, FC differs in more than one kg, so the FE is greater in animals 

with high RIG. Considering that feed is the most significant production cost in animal 

production systems, lower feed consumption and greater weight gains represent an important 

reduction in operation costs and increase the profitability of the production units and the 

efficient use of the supplied energy. 
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Methane production 

 

 

The rumen microbial ecosystem is extremely diverse. It includes Eukarya, Archaea, and 

Bacteria phylotypes that interact between them, the feed, and the host, with densities of 1010 

bacteria mL-1, 106 protozoa mL-1, and 103 fungi ml-1 of ruminal fluid(56). 

 

The diversity and concentration of the organisms that live in the rumen are influence by 

several factors, such as diet, breed, age, health status, environment, and geographic 

location(57). However, diet is considered the primary determinant of ruminal microbial 

diversity and the fermentation parameter in cattle and sheep(58). Thus, animals fed forage 

have a more diverse microbial ecosystem, with more frequent methanogenic groups, 

compared to those provided concentrate-based diets(59). This implies greater use of free H2 

(produced by a more acetic fermentation) to reduce CO2 into CH4
(60)

.  

 

The results reported by Henderson et al(61) indicate that regardless of the type of diet and 

geographic location, there is a central microbiome in the rumen comprised of seven groups. 

These groups represent 67.1% of the bacterial sequences in the global analyzed samples. This 

major group includes Prevotella, Butyrivibrio, Ruminicoccus, Lachnospiraceae, 

Ruminococcaceae, Bacteroidales, and Clostridiales. However, some genera are more 

abundant with specific diets. For example, Bacteroidales, Clostridiales, Fibrobacter, and 

Ruminococcaceae are more abundant in animals fed with forage; Prevotella and 

Succinivibrionaceae are more abundant with concentrate-based diets. Moreover, in the same 

study, they reported that the archaea population is constituted mainly by Methanobrevibacter 

gottschalkii and Methanobrevibacter ruminantium, representing 74 % of all the archaea 

inside the rumen. Other found species were Methanosphaera sp. and two groups belonging 

to Methanomassiliicoccaceae. These five species constituted 89 % of the total archaea; 

Methanobacterias being one of the main species that utilize free H2 to reduce CO2 to CH4
(62). 

These species are associated with fibrous diets, where fermentation is more acetic and H2 

release is higher 

 

Recent studies indicate that feed efficiency is related to CH4 production(31,62,63). It has been 

reported that the methanogenic communities in animals with high RFI are more diverse 

compared to efficient animals, with a high prevalence of M. stadtmaniae and 

Methanobrevibacter sp. Thus, animals with high RFI emit more CO2 and CH4 due to their 

higher fiber intake, which increases ruminal CH4 production. Animals with low RFI tend to 

modify their bacteria consortia. Therefore, they can use the fibrous components of the ration 

more efficiently, reducing the passage rate and increasing digestibility. Thus, completely 

fermenting rations at a ruminal level(62).  
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Using statistical prediction models, female sheep have shown significant differences in CH4 

emissions. Emissions are lower in animals with low and medium RFI, compared to those 

with high RFI (0.025a, 0.028a, and 0.032b CH4 kg-1 d-1, respectively). However, no differences 

were observed in male sheep due to the lack of significant difference in the DMI of efficient 

and inefficient animals(40).  

 

Furthermore, greater efficiency could be related to bacteria that modify the fermentation 

pattern towards a more propionic fermentation, which favors meat production(33). Propionate 

is the main substrate contributing to the gluconeogenesis process; glucose is required as an 

energy source in protein synthesis(43). Previous studies have reported greater propionate 

concentrations in highly efficient sheep (low RFI) fed concentrate-based diets, compared to 

those less efficient (41.2 vs 30.2 % Molar)(6). Therefore, animal selection based on feed 

efficiency indexes could reduce the greenhouse gases (GHG) produced by sheep.  

 

 

Candidate genes associated with feed 
 

 

Various studies have reported many single nucleotide polymorphisms (SNP) associated with 

feed efficiency in bovine species(64-67). Few studies have focused on sheep. Knowing the 

genes implicated in the biological processes related to desirable, productive characteristics 

(feed efficiency and meat quality) of farm animals(20,55,68-86) helps understand the relationship 

between these parameters and then use these genes as molecular markers for the selection of 

animals with desired traits (Table 3). 

 

Cockrum et al(87) identified markers through genome-wide association studies (GWAS) with 

a nominal threshold of P<3.02-4 in sheep genes associated with RFI. The candidate genes 

were: Glis Family Zinc Finger 1 (Glis1), SRY-related box -5 and -6 transcription factor 

(Sox5, Sox6), and Interleukin 1 Receptor Accessory Protein Like 1 (Il1rapl1). Another gene 

associated with this index is the Leptin receptor (Lepr). The association of a SNP in exon 2 

of Lepr has also been reported in lactating ewes (P<0.05); the homozygous CC genotype had 

the highest RFI (2.579a), compared to the TC (1.218b) and TT (1.005b) genotypes(88). 

 

Recent studies have reported the association of DWG and specific SNPs; these associations 

can be considered in selecting animals with better productive performance. For example, in 

sheep, three genes have been associated with DWG. The triadin gene (Trdn) is in 

chromosome 8, and the 3-oxoacyl-ACP synthase (Oxsm) and Retinoic acid receptor beta 

(Rarb) genes are located in chromosome 26(89). Furthermore, the Leptin gene (Lep) has been 

associated with DWG, with significant differences (P<0.05) in the DWG (six-month 

weaning) of heterozygous BC, AB, and AC genotypes than in the homozygous AA and CC 
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(116, 103, 99, 94, and 94 g d-1, respectively)(90). In the Salsk breed, significant differences 

(P<0.001) were observed in the growth hormone (Gh) genotypes; AB was superior to AA 

(128.64 vs 81.51 g d-1)(91). The Melanocortin-4 receptor gene (Mc4r) has also been associated 

with DWG. A SNP located in the 3' untranslated region of the gene (NM_001126370.2) 

causes a G>A nucleotide variation in the 1016 position. The heterozygous GA genotype was 

superior to the homozygous GG at 120 (210.23 vs 192.01 g/d) and 180 d (166.35 v. 155.66 

g/d) of fattening. Furthermore, SNP 292 G> A was detected with a variation in amino acid 

98 Gly> Arg, which affected the eye area of the Longissmus muscle(92). 

 

The association of FC with some genes has been reported. In exon 3 of the Lep gene in 

lactating ewes, significant differences (P<0.001) were found in the genotypes of a SNP with 

amino acid variation (c.314 G>A, Arg>Gln). The GC genotype showed lower FC (2.019 kg) 

compared to the AG genotype (3.886 kg) in milk production(88). Additionally, the g.1429 

C>A and g.1117 A>C synonym mutations in the Alpha-2A adrenergic receptor (Adra2a) and 

Ryanodine receptor 2 (Ryr2) genes had a positive effect with this efficiency indicator. In 

Adra2a, three genotypes were identified (CC, CA, and AA); the homozygous CC genotype 

had the lowest FC (4.67b, 5.18a, and 5.14a kg, respectively). As for Ryr2, similar genotypes 

were identified. However, the homozygous had the lowest FC, but it was statistically similar 

to the CC genotype (5.14b, 5.08b, and 5.46a kg, respectively)(55). Recently, in Santa Inés 

sheep, the GDNF family receptor alpha 1 (Gfra1) and Phosphodiesterase (Pde8b) genes have 

been associated with FE(93). 

 

The genes implicated in feed efficiency can help identify superior individuals using 

molecular techniques. These techniques have been scarcely used in hair sheep. Their use will 

help identify and select, at an early age, those individuals with higher feed efficiency, 

reducing the generation interval. 

 

 

Meat quality and associated candidate genes 

 

 

Previous studies in sheep(5,37,39,46-49,51) suggest that carcass characteristics (Longissimus area, 

subcutaneous fat thickness , and Longissimus muscle depth) are not negatively affected when 

using the RFI index. However, regarding carcass yield, there tends to be a significant 

difference (P<0.1) between efficient and inefficient animals(37,54). Moreover, genes have been 

associated with the physicochemical parameters that determine meat quality, such as pH, 

tenderness, water holding capacity, and color. 
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pH 

 

 

In small ruminants, a normal pH ranges from 5.5 to 5.8(94) and is related to desirable 

characteristics in meat quality, such as color, shear force, and water holding capacity(95). 

Some studies have demonstrated the relationship between the pH and the polymorphism of 

some genes. A previous study reported the association of the Lep gene (intron 2, g.103 A>G) 

in the Suffolk breed and identified the AA and AG genotypes. The homozygous genotype 

had a lower pH value (5.53) when compared to the heterozygous (P<0.05)(96). Moreover, 

genotypes of the Fatty acid-binding protein gene (Fabp4) were identified in Chinese sheep 

with an effect on pH (P<0.1).  The AG heterozygous genotype had a lower pH (6.3); AA and 

GG had a pH of 6.5(97). Although the final pH was higher than that reported as desirable in 

the literature(94). 

 

 

Tenderness 

 

 

As rigor mortis begins, sarcomeres shorten, and myofibrils undergo transverse contraction, 

increasing shear force. Within myofibrils, protein density increases in specific areas when 

the space between myofilaments decreases. Therefore, it is likely that this space reduction 

reduces the protease activity in the myofibril proteins, affecting meat tenderness(98). The 

decrease in temperature and pH in the carcass, along with the increase in cytoplasmic 

calcium, activates proteolytic enzymes, such as caspases and calpains(95), improving meat 

tenderness. Calpains are responsible for up to 90% of the proteolytic tenderizing of meat(99). 

Other proteolytic systems in the muscle, such as the lysosomal proteases and the 

multicatalytic proteasome complex, participate in cytoskeleton proteolysis and meat 

tenderizing, although to a lesser extent(100).  

 

In sheep, some genes have been associated with shear force. Calpastatin (Cast) being the 

main gene associated with the texture. In Iranian breeds, significant differences have been 

reported between Cast genotypes (B, C, D, I)(101). Genotype I required a shear force of 8.39 

kg; genotype C required 12.69 kg. Sheep with genotype I are more desirable for this 

parameter. Additionally, a previous study reported a nucleotide variation (197A>T) in exon 

6 of Cast, changing amino acid 66 from glutamine (Gln) to leucine (Leu). The heterozygous 

AT genotype had a lower shear force than the homozygous AA (6.68 vs 8.71 kg). For this 

same gene, two genotypes were detected on the Awassi breed. These genotypes showed 

significantly different (P<0.05) shear forces. The MN genotype had a higher force than the 

MM genotype (4.36 and 3.98 kg, respectively)(102). In Chinese breeds, previous studies have 

reported the association between Diacylglycerol O-acyltransferase 1 (Dgat1) genotypes and 
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tenderness. The TT genotype required a lower force than TC and CC (2.30, 2.69, and 2.73 

kg)(103). Also, in Chinese breeds, the association of Fabp4 genotypes and tenderness has been 

previously reported. The AA genotype was more tender than the AG and GG genotypes 

(2.24, 2.78, and 2.88 kg, respectively, P<0.05)(97). Lep is another gene associated with this 

parameter. For example, previous studies have reported the polymorphism of this gene in the 

Suffolk breed (intron 2, g.103 A>G). The shear force of the AA genotype is lower than that 

of the AG genotype (3.6 and 4.7 kg, respectively)(96). 

 

 

Water holding capacity (WHC) 

 

 

WHC is defined as the ability of meat to retain its total or partial water content(104); it is 

closely related to the pH and isoelectric point of muscle proteins (pH 5.1-5, net charge 0). 

Thus, under these conditions, WHC is minimized(98). This parameter is evaluated by drip loss 

and cooking loss tests. The first test measures the water lost because of gravity(105), i.e., the 

extracellular water. In contrast, the second test measures the water loss derived from cooking 

the meat(104).   

 

In Awassi sheep, the Cast gene is related to cooking loss, with differences (P<0.05) between 

the MM and MN genotypes. The homozygous genotype had the highest percentage of water 

loss (48.45 and 45.69 %, respectively)(102). 

 

Moreover, genes associated with the drip loss parameter have been previously identified. For 

example, three genotypes of the Dgat1gene were identified; the water loss in the TT genotype 

was lower than that of TC and CC,  which showed similar losses  (67.1,  92.6, and  92.4 g 

kg-1)(103). Furthermore, the Fabp4 gene is also associated with this parameter. Of the AA, 

AG, and GG genotypes, AA had the lowest loss percentage (8.86, 9.48, and 9.39 %, 

respectively), although there were no significant differences (P<0.1)(97). Polymorphisms of 

the Calpain small subunit 1 (Capns1) gene have also been associated with WHC. Five 

genotypes with different water loss percentages (P<0.01) have been identified. The genotype 

B1B1 had a 4.11 % water loss, while A1A1, A1B1, A1C1, and B1C1 ranged from 2.23 to 

3.30 %(14). Additionally, two genotypes of the Insulin-like growth factor 1 (Igf-1) with 

significant effects on drip water loss have been reported. The homozygous AA genotype lost 

2.47 %, while the heterozygous AB lost 3.33 %(106). Furthermore, the polymorphism of the 

Myostatin (Mstn) gene has also been associated with this parameter. Two genotypes with 

significant differences (P<0.05) in their water loss percentages have been identified. The AA 

genotype had a water loss of 2.5 %, while AE lost 3.5 % of water(107). 
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Color 

 

 

Meat color is largely the main attractive factor for the consumer, who perceives this 

parameter as a sign of freshness and quality; thus, red color in sheep meat is preferable. The 

color of meat changes as the myoglobin pigments in the meat surface interacts with oxygen, 

changing from deoxymyoglobin (purple) to oxymyoglobin (red) to metmyoglobin 

(brown)(108). The CIE-L* (black-white), a* (red-green), and b* (blue-yellow) values have 

been used to determine meat color. A light reflectance ratio of 630/580 nm is used to detect 

the chemical changes that result from the oxygenation or oxidation of myoglobin(109).  

 

In Merino sheep, significant differences (P<0.05) in the L* reflectance coordinates between 

Capns1 genotypes (A1A1, B1B1, A1B1, A1C1, and B1C1) have been reported. Genotypes 

B1B1 and A1C1 showed the lowest and highest luminosity (38.05 and 41.13, 

respectively)(14). Like calpains, the antagonist of Cast is associated with color. Significant 

differences (P<0.05) in L* have been observed between the MM and MN genotypes in 

Awassi sheep; the luminosity of the homozygous genotype was higher than that of the 

heterozygous (37.60 and 32.47, respectively)(102). In Iranian sheep, two genotypes (A and B) 

were identified for the Stearoyl-CoA Desaturase (Scd) gene. These genotypes showed 

significant differences in L* and a*; the B genotype had a higher L* (40.96 and 43.16, 

respectively) than A, while A had a higher a* value than B (16.0 and 15.08, respectively)(110). 

In hair sheep, no previous study has evaluated the genes associated with carcass 

characteristics and meat quality. Therefore, using molecular techniques that evaluate these 

genes is critical to accelerating the genetic improvement of hair breeds.  

 

 

Conclusions 
 

 

RFI and RIG are indexes that allow identifying and selecting animals with high feed 

utilization efficiency. In sheep, a negative effect on the carcass characteristics has not been 

detected. The heritability of feed utilization efficiency is moderate and is associated with 

multiple genes. These genes can be used as molecular markers for genetic improvement. 

Therefore, the study of these indexes and the use of molecular techniques in the selection and 

breeding of hair sheep could help predict animal behavior. Furthermore, some of the genes 

related to carcass characteristics and meat quality can be included in the breeding programs 

of these breeds. This would promote the development of sheep farming since more efficient 

animals have lower feed requirements without affecting growth rate (RFI), or greater weight 

gains with similar feed intake (RIG), reducing production costs and increasing the 
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profitability of the production units. In addition to producing the quality food demanded by 

the global market and contributing to reducing the ecological footprint of livestock. 
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Table 1: Production parameters in sheep classified by residual feed intake (RFI) 

 Residual feed intake   

Breeds 
Low Medium High Low Medium High Low Medium High DDMI 

Author 
Daily weight gain Dry matter intake Feed conversion % 

½D½SI 0.280 - 0.270 1.24b - 1.41a 4.43b - 5.15a 12.06 5 

RHS 0.260 - 0.240 2.23b - 3.22a - - - 30.74 6 

¾T¼P 0.321a 0.277b 0.306ab 1.34b 1.35b 1.52b 4.18a 4.90b 5.00b 11.84 37 

½D½SI 0.284 0.301 0.286 1.25** 1.37** 1.44** - - - 13.19 38 

Dorper 0.266  0.253 2.63b  3.00a 5.94b  6.91a 12.33 39 

Rambouillet 0.180 0.170 0.180 1.39c 1.48b 1.67a - - - 16.77 40 

Targhee 0.350 0.330 0.360 1.92b 2.02b 2.32a 6.58b 7.71a 7.83a 17.24 45 

Ghezel 0.210 - 0.200 1.01b - 1.12a 4.95b - 5.53a 9.82 46 

Ile de France 0.329 - 0.335 1.42b - 1.63a 4.35 - 4.93 12.88 47 

Targhee 0.297 0.302 0.286 2.15b 2.31b 2.52a - - - 14.68 48 

Targhee 0.294 - 0.293 2.21b - 2.43a - - - 9.05 49 

RHS - - - 2.10b - 2.89a - - - 27.34 50 

Kurdi 0.260 - 0.260 1.82b - 2.11a - - - 13.74 51 

Hu 0.280 - 0.250 1.50b - 1.72a - - - 12.80 52 

Ghezel 0.280 - 0.290 1.52b - 1.72a 5.47 - 5.93 11.63 53 

Hu 0.250 0.260 0.260 1.09c 1.25b 1.33a 4.51c 4.84b 5.39a 18.04 54 

Hu 0.260 - 0.270 1.05b - 1.48a 3.92b - 5.62a 29.05 55 

DDMI= Difference in dry matter intake (%), ½D½SI= ½Dorper ½Santa Inés, RHS= Rambouillet, Hampshire, and Suffolk, ¾T¼P= ¾Texel ¼Pantaneira.  

**, abc= Significant differences. 
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Table 2: Production parameters in sheep classified by residual intake and gain (RIG) 

 Residual intake and gain  

Breed 
Low Medium High Low Medium High Low Medium High Low Medium High 

Author 
Dry matter intake Daily weight gain Feed conversion Feed efficiency 

½D½SI 1.39a - 1.31b 0.26b - 0.30a 5.32a - 4.28b 0.19b  0.23a 5 

¾T¼P 1.28 1.27 1.22 0.26b 0.29a 0.31a 4.99a 4.28b 3.91c 0.20c 0.24b 0.26a 36 

½D½SI 1.41 1.37 1.31 0.26** 0.29** 0.30** 5.36* 4.61* 4.27* 0.18* 0.21* 0.23* 38 

½D½SI= ½Dorper ½Santa Inés, ¾T¼P= ¾Texel ¼Pantaneira, *= Calculated data, **, abc= Significant differences. 
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Table 3: Genes associated with sheep feed efficiency and meat quality 

Symbol Gene Chrom Biological process Param Author 

Glis1 
Glis Family Zinc 

Finger 1 
1 

Significantly promotes human and mouse fibroblast 

reprogramming into induced pluripotent stem cells during 

embryonic development. It is highly expressed in the fertilized 

ovum, moderately expressed in metaphase II oocytes, and weakly 

expressed in two-cell embryos. Additionally, this gene is 

associated with the regulation (including the transcription factor 

Foxa2, several genes of the Wnt and Esrrb families) of genes 

involved in the mesenchymal-epithelial transition, a crucial 

process in somatic cell reprogramming. 
RFI 

68-70, 

87 

Sox5 

and 

Sox6 

SRY-related box -5 

and -6 transcription 

factor 

15 

Its expression is related to an efficient process of chondrogenesis, 

although the Sox9 gene is required to activate and maintain 

chondrocyte-specific genes. The Sox5 and Sox6 genes significantly 

increase the transcriptional activity of Sox9, ensuring its binding to 

DNA. 

Il1rapl1 

Interleukin 1 

Receptor Accessory 

Protein Like 1  

X 

Related to intellectual disability and autism spectrum disorders 

promoted by the absence of the Il1rapl1 protein. Mutations in 

Il1rapl1 result in the absence of the protein or the production of a 

dysfunctional protein in humans.  

Lepr Leptin receptor 1 

It produces a protein of the same name that, when combined with 

Leptin, triggers a series of chemical signals (JAK/STAT signaling 

pathway) that activate the receptor and transphosphorylate the JAK 

molecules associated with it. This pathway participates in energy 

homeostasis.  

RFI 71, 88 

Trdn Triadin 8 
It regulates the release of Ca2+ through the Ryr2 and Casq2 calcium 

release channels in the sarcoplasmic reticulum; this is a crucial step 
DWG 

72-74, 

89 
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for the contraction of the skeletal and cardiac muscles. In humans, 

the lack of triadin results in cardiac arrhythmia with sudden cardiac 

death. 

Oxsm 

Mitochondrial 3-

oxoacyl-ACP 

synthase 

26 

An enzyme related to the synthetic α-lipoic acid pathway. Its 

activity is essential for the elongation of the fatty acid chains in the 

production of α-lipoic acid. α-lipoic acid deficiency represents a 

risk factor for diabetes. 

DWG 

Rarb 
Retinoic acid 

receptor beta 
26 

Overall, retinoic acid receptors are essential for retinoic acid 

signaling during embryonic development and organogenesis. Mice 

lacking two isotypes of Rara, Rarb, Rarg show some 

characteristics of vitamin A deficiency syndromes in fetal and 

postnatal stages, as well as some congenital malformations. 

DWG 

Lep 

 

Leptin 

 
4 

Hormone synthesized in the adipose tissue with an important role 

in the regulation of appetite and energy metabolism. Additionally, 

leptin has been linked to fat deposition in mammals. 

DWG 75, 90 

FC 75, 88 

pH 75, 96 

 Tenderness 

Gh Growth hormone 11 

Activates anabolic processes that regulate the increase in body size 

and skeletal growth. It controls and coordinates the flow of 

metabolic processes, such as stored fat mobilization and fatty acid 

and glucose catabolism in tissues.  

DWG 76, 91 

Mc4r 
Melanocortin-4 

receptor  
23 

This receptor is predominantly expressed in the hypothalamic 

appetite regulator nucleus; it regulates food intake and energy 

homeostasis.  

DWG 77, 92 

Adra2a 
Alpha-2A 

adrenergic receptor 
22 

Catecholamine regulator; associated with energy metabolism. This 

receptor also participates in the adrenaline pathway and can 

regulate energy metabolism through the secretion of adrenaline, 

which affects FC. 

FC 
51, 55, 

72, 78 
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Ryr2 
Ryanodine receptor 

2 
25 

Main channel of Ca2+ release from the sarcoplasmic reticulum in 

ventricular myocytes. This receptor is related to heart disease. This 

receptor also participates in the adrenaline pathway and can 

regulate energy metabolism through the secretion of adrenaline, 

which affects FC. 

FC 

Pde8b 
Phosphodiesterase 

8B 
7 

This gene encodes a cyclic adenosine monophosphate-specific 

phosphodiesterase that regulates thyroid-stimulating hormone 

levels. The thyroid synthesizes thyroxine, which binds to the 

receptors to control biological processes, such as gene expression, 

growth, development, and metabolism. 

FE 

79-81, 

93 

Gfra1 
GDNF family 

receptor alpha 1 
22 

Associated with the tyrosine kinase receptor, which regulates cell 

proliferation, growth factors, and neuronal development and 

differentiation. 

FE 

Fabp4 
Adipocyte fatty 

acid-binding protein 
9 

Known as intracellular lipid chaperons, they bind and transport 

long chain fatty acids in mammals. In cattle, these proteins are 

associated with growth, fat deposition, and carcass traits.  

pH 

82, 97 Tenderness 

WHC 

Capns1 
Calpain small 

subunit 1 
14 

Mainly associated with the postmortem degradation of myofibrillar 

proteins and the production of free amino acids, resulting in meat 

tenderization. 

WHC 

20, 14 
Color 

Cast Calpastatin 5 

This enzyme inhibits calpain activity and is related to the 

regulation of muscle protein degradation. The inhibition of muscle 

protein degradation by the calpastatin system increases production 

efficiency but affects meat tenderness. 

Tenderness 
20, 

101,102 

WHC 
20, 102 

Color 

Dgat1 
Diacylglycerol O-

acyltransferase 1 
9 

This enzyme modulates the synthesis of triglycerides and regulates 

their circulation. Additionally, it is directly related to glucose 

metabolism, obesity, insulin resistance, and hepatic steatosis. 

Tenderness 

83, 103 
WHC 
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Igf-1 
Insulin-like growth 

factor 1 
3 

This protein participates in the control of skeletal growth and cell 

differentiation by activating the cell cycle.  
WHC 84, 106 

Mstn Myostatin 2 

Myostatin is a potent negative regulator of muscle mass in 

mammals. The natural mutations in Mstn inactivate or suppress the 

protein, which increases musculature. The skeletal muscles 

affected by these mutations increase their myofibrils (hyperplasia) 

and, to a lesser extent, the cross-sectional area of the myofibers 

(hypertrophy). These mutations have a greater impact on 

homozygous individuals compared to heterozygous individuals. 

WHC 85, 107 

Scd 
Stearoyl-CoA 

Desaturase 
22 

It regulates lipid synthesis and oxidation.  
Color 86, 110 

Chrom= Chromosome, Param= Parameter, RFI= residual feed intake, DWG= daily weight gain, FC= feed conversion, FE= feed efficiency, WHC= water holding 

capacity. 

 

 


