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Abstract: 

Anaplasma spp. bacteria cause anaplasmosis, a disease which negatively affects livestock 

production worldwide. Molecular detection by PCR requires efficient extraction of DNA 

from whole blood, which in turn depends on blood sample quality. Failures in sampling 

procedures and/or sample storage can lead to hemolysis and blood clotting, which can 

hamper diagnosis. An established DNA extraction protocol using Chelex® 100 resin was 

modified to optimize detection of Anaplasma spp. in hemolyzed and coagulated bovine 

blood samples, as well as reduce its cost. The optimized protocol extracted highly pure 

DNA effective in PCR analysis. Efficiency of the optimized protocol was compared with 

two commercial DNA extraction kits. When used in PCR detection of Anaplasma spp., 

the concordance values for all three were high (Cohen’s Kappa = 0.72). The optimized 
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protocol is effective at extracting DNA from complex blood samples and is much less 

costly than commercial methods, a clear advantage when operating under limited budgets. 
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Anaplasmosis is a disease recognized for its worldwide impact on public health and 

livestock production(1,2). Caused by bacteria of the genus Anaplasma, it results in a 

debilitating disease in cattle that can be fatal in some cases. The presence of anaplasmosis 

in a livestock production system can lead to economic losses from decreased milk 

production, delayed growth and low weight gain(3,4). Due to a lack of epidemiological 

data in Latin American countries, it is difficult to quantify the true economic impact of 

bovine anaplasmosis in the region(5). Managing anaplasmosis can be complex because of 

the existence of asymptomatic carriers. These act as reservoirs, contributing to the 

disease’s spread and raising infection rates in susceptible populations(5). 

 

 

Compared to conventional methods such as culture, serology and light microscopy, the 

polymerase chain reaction (PCR) method provides greater specificity and sensitivity in 

detecting Anaplasma spp.(6,7). Furthermore, the probability of cross-detection of other 

hemoparasites is minimal when using PCR(6). Extraction of DNA from clinical samples 

is a vital step prior to PCR analysis. This is why DNA extraction efficiency is essential 

to producing reliable and repeatable results. Detection of Anaplasma spp. by PCR ideally 

requires a whole blood sample since this genus can parasitize different blood cells(7). 

However, the presence of various elements of the blood and/or failures in sampling, 

and/or sample transport or conservation can generate changes that make it difficult to 

extract genetic material or that inhibit the PCR reaction(8,9). For example, alterations can 

occur in sample homogeneity, and hemolysis and clots can be observed, all of which 

complicate cell lysis and genetic material release during extraction. In addition, 

hemolyzed blood contains a higher concentration of hemoglobin and its derivatives, 

which can compromise PCR diagnostic efficacy. This is why hemolyzed and clotted 

blood is generally not used in molecular screening tests. 

 

 

Several DNA extraction kits are currently available on the market. They are designed to 

extract low concentrations of high quality DNA(10) from complex or poor quality samples 

such as clotted and hemolyzed blood(11). However, high cost limits generally their use in 
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research subject to limited budgets, a common situation in developing countries. One 

exception is the Chelex® 100 resin DNA extraction method, which is simple and 

inexpensive, and is therefore used with a wide variety of tissues(12,13). Initially, the cells 

are lysed to release the DNA, be it with heat treatment or, if necessary, tissue maceration. 

The Chelex® 100 resin acts as a chelator by capturing magnesium ions, consequently 

preventing DNA degradation due to nuclease action(12). The Chelex® 100 resin protocol 

of Singh et al(14) is particularly efficient at extracting high quantities of highly pure DNA. 

Designed for analysis of dried blood on filter paper, use of this protocol has not yet been 

described for other types of samples. The present study objective was to optimize this 

DNA extraction protocol for hemolyzed and coagulated bovine blood samples, to make 

it applicable for molecular detection of pathogens in animals, specifically, Anaplasma 

spp. in cattle. 

 

 

Analyses were run using 40 blood samples collected in September 2018 as part of the 

“Farm Plans” (Planes de Finca) project(15). The project is promoted by the Autonomous 

Decentralized Government of the Province of Esmeraldas (Gobierno Autónomo 

Descentralizado de la Provincia de Esmeraldas - GADPE) and the Inter-American 

Institute for Cooperation in Agriculture (Instituto Interamericano de Cooperación para la 

Agricultura - IICA), with the participation of San Francisco University Quito 

(Universidad San Francisco de Quito). The samples were collected from crossbreed Bos 

taurus cattle with at least 50 ticks per animal. Blood samples (5 ml each) were taken from 

the coccygeal or jugular vein in tubes containing anticoagulant. The samples were 

refrigerated at 4 to 5 °C during transport to the laboratory of the Teaching Veterinary 

Hospital of San Francisco University Quito, where they were frozen until processing. 

 

 

Upon thawing, the samples were confirmed to be hemolyzed and to contain small- to 

medium-sized clots. Extraction of DNA was done in a subgroup of 10 samples with these 

characteristics and previously confirmed to be positive for Anaplasma sp. The analysis 

was done following the protocol designed by Singh et al (see Table 1 for summary)(14). 

Because this protocol was designed for dried blood samples on filter paper, an assay was 

performed using different volumes of blood (5 µl, 50 µl, and 100 µl). Steps were added 

to the protocol, specifically in the protein precipitation phase, to improve DNA purity 

using the sample volume defined in the protocol. Five steps were added: a) Add 75% 

alcohol at a 1:1 ratio with the volume of supernatant recovered in step 10; b) Let it rest 

overnight (approx. 16 h) at -20 °C; c) Centrifuge mixture at 13,000 rpm for 1.5 min; d) 

Recover supernatant; and e) Implement step 11 as shown in Table 1. 
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Table 1: DNA extraction protocol of Singh et al(14) 

 

 

 

The quantity and purity of extracted DNA was compared between the reference 

protocol(14) and that with modifications in the protein precipitation phase. The 

concentration and quality of sample DNA were measured by spectrophotometry in a 

NanoVue Plus Spectrophotometer (GE Healthcare, USA). The molecular analysis was 

done under the Framework Contract for Access to Genetic Resources No. MAE-DNB-

CM-2018-0106. 

 

 

To demonstrate the efficiency of the modifications made to the established protocol(14), 

DNA was extracted from 30 hemolyzed and coagulated blood samples for which 

Anaplasma spp. positivity was unknown. Extraction of DNA was done using the modified 

protocol as described above, hereafter referred to as the modified Chelex protocol (MCP). 

From the same samples, DNA was extracted using the commercial kits DNeasy Blood & 

Tissue Kits Print Qiagen® and AccuPrep® Genomic DNA Extraction Kit Bioneer®, 

DNA Extraction 

1. Heat to 100 °C, 300 μl 7% Chelex® 100 resin stock solution for 10 min. 

2. Add 5 μl blood and heat mixture for 8 min at 100 °C. 

3. Mix with a vortex for 15 sec and reheat for 7 min at 100 °C. 

4. Centrifuge for 1.5 min at 12,000 rpm. 

5. Recover supernatant and discard pellet. 

Protein precipitation 

6. Add 7.5 M ammonium acetate stock solution to supernatant such that the final 

solution has a 2.5 M concentration. 

7. Rest mixture for 5 min on ice. 

8. Mix with a vortex for 10 sec. 

9. Centrifuge at 13,000 rpm for 10 min at -4 °C. 

10. Recover supernatant in new tube. 

DNA precipitation 

11. Add 3 M ammonium acetate stock solution to supernatant such that the final 

solution has a 0.3 M concentration. 

12. Add 200 μL absolute alcohol. 

13. Mix with a vortex for 5 sec. 

14. Rest for 4 h at -20 °C. 

15. Centrifuge at 13,000 rpm for 10 min at -4 °C. Discard supernatant. 

16. Wash pellet two times: first with 200 μL cold 75% alcohol; second with 200 μL 

cold 100% alcohol. Follow each with a centrifugation at 13,000 rpm for 10 min at -

4 °C and discard the supernatant. 

17. Allow pellet to air dry for 10 min. 
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following the manufacturers’ recommendations for DNA extraction from whole blood. 

Confirmation of MCP efficacy in molecular detection of Anaplasma spp. was done by 

applying a PCR reaction specific to the Anaplasma bacterial genus(16). The amplicons 

obtained from 13 positive samples (n = 40) were sequenced at Functional Biosciences, 

Inc. (Wisconsin, USA) to confirm the presence of Anaplasma spp. DNA. The constitutive 

gene that codes for the protein β-Actin, always present in bovine blood samples(17), was 

used to rule out the possibility of false negatives due to inhibition of the PCR reaction. 

The details of the  primers and the product  size of both  PCR  reactions are shown in 

Table 2. 

 

 

Table 2: Primer sequences 

Gene Primer Sequence: 5' - 3' Size  Ref. 

16S 

rDNA 

AnaplsppF AGAAGAAGTCCCGGCAAACT 
800 bp (18) 

AnaplR3 GAGACGACTTTTACGGATTAGCTC 

β-actin 
XAHR 17 CGGAACCGCTCATTGCC 

289 bp (19) 
XAHR 20 ACCCACACTGTGCCCATCTA 

 

 

The results were analyzed with a Shapiro-Wilks normality test and non-parametric tests. 

Differences in the amount of DNA extracted between blood volumes (5 µl, 50 µl and 100 

µl) were identified with the Friedman test and a Wilcoxon post-hoc analysis; the P values 

were adjusted with the Bonferroni correction(19). Comparison of DNA purity from the 

protein precipitation assays was done with the Wilcoxon non-parametric test. The 

Cohen’s Kappa test and McNemar test were applied to identify concordance between the 

PCR results from the three extraction methods(20,21). All statistical tests were run at a 95% 

significance level and using the R v.3.3.0 software(18). 

 

 

The reference protocol(14) was used in 10 hemolyzed and coagulated blood samples. To 

define optimum sample volume, three different volumes (5 µl, 50 µl and 100 µl) of liquid 

blood from each sample were tested. The DNA concentrations differed between the 5 µl 

volume and 50 µL and 100 µL volumes (Friedman test: χ2(2) = 16.800, P= 0.017) (Figure 

1), but not between the 50 µL and 100 µL volumes (Wilcoxon: Z= -2,293, P= 0.063). 

With the intent of using the lowest possible volume, the 50 µl volume was used in the 

following steps. 
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Figure 1: DNA concentration (ng/µl) obtained from different volumes of blood (n=10), 

using extraction method of Singh et al(14) (χ2(2) = 16,800; P=0.017*) 

 

When using the reference protocol(14), the purity of the DNA extracted from the 

coagulated and hemolyzed blood samples yielded a median A260/280 ratio of 0.820 (n = 

10). In the MCP, modification of the protein precipitation phase increased the median 

A260/280 ratio to 1.970 (n= 10). Compared to the reference protocol(14), the MCP allows 

significant increases in the 260/280 (Wilcoxon: Z= -2.803, P= 0.005) and 260/230 

(Wilcoxon: Z= -2.666, P= 0.002) ratios (Figure 2). Worth mentioning is that the DNA 

concentration in these samples decreased significantly (Wilcoxon: Z= -2.803, P= 0.005) 

compared to that obtained with the reference protocol(14). However, this did not interfere 

with molecular detection of Anaplasma spp. in any of the samples. An added advantage 

is that the nonspecific bands observed when amplifying samples extracted with the 

reference protocol(14) did not appear when using the MCP. 

 

Figure 2: Comparison between the Singh et al(14) extraction protocol and the modified 

Chelex protocol (MCP) in terms of A) DNA purity and B) DNA quantity (n=10) 
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The DNA extracted from 30 samples of coagulated and hemolyzed blood with two 

commercial kits and the MCP exhibited no inhibition of the PCR reaction. The same was 

true in terms of analysis of the presence of Anaplasma spp. (Table 3), with high Cohen’s 

Kappa concordance index values (0.72) between the MCP and the commercial kits. The 

McNemar exact test identified no significant differences between the kits and the MCP 

in the proportion of positive samples detected by PCR (McNemar’s Chi-squared 0.500; 

P= 0.5). 

 

 

Table 3: Anaplasma spp. positivity results in blood samples processed with different 

methods (n=30) 

MCP 

 Qiagen Kit Bioneer Kit 

 Positives Negatives Positives Negatives 

Positives 25 0 25 0 

Negatives 2 3 2 3 

MCP= modified Chelex protocol. 

 

Bovine anaplasmosis’ negative impacts in the livestock sector(1,2) can include anemia, 

weakness, reduced growth and milk production, abortions and even mortality in infected 

cattle(22). The true prevalence of anaplasmosis in cattle in Latin America and the 

Caribbean is unknown. This is partially due to the fact that 80 % of livestock producers 

in these regions are small family farmers living in rural and marginal areas(23), and their 

meagre financial resources limit efforts towards vaccination and infectious disease 

control(24). Limited resources in developing countries is also a problem when doing 

research or implementing disease prevention campaigns since laboratory supplies can 

cost two to ten times more than in developed countries(25). This highlights the need to 

develop techniques that accurately detect Anaplasma spp. and are affordable for both the 

agencies in charge of controlling anaplasmosis and for small and large farmers. 
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Molecular detection of pathogens by PCR from clinical samples has become a widely 

used methodology for infectious disease diagnosis and monitoring(26). This technique also 

allows subsequent characterization of the pathogen by sequencing its genetic material, 

which produces data useful in understanding disease epidemiology. A vital step prior to 

molecular detection is extraction of genetic material from samples. This procedure can be 

affected by sample collection, transport and storage practices. Each of these steps must 

ensure that pathogen genetic material remains intact until extraction procedure 

implementation. However, pre-extraction conditions are not always ideal. For example, 

sample collection from animals in difficult-to-access rural areas makes optimal sample 

collection and conservation a challenge. Under these conditions samples commonly 

exhibit hemolysis and clots, which make subsequent analysis difficult because they can 

inhibit the pathogen molecular detection reaction. 

 

 

The present results confirmed that the modifications made to the DNA extraction protocol 

of Singh et al(14) allow DNA extraction from hemolyzed and coagulated blood which can 

then be used in molecular detection of Anaplasma spp. When the MCP was used to extract 

DNA from 50 µL of sample, the purity values in both the 260/280 and 260/230 ratios 

were higher than when using the reference protocol(14). The MCP did produce less DNA 

than the tested commercial kits, but with no differences in terms of Anaplasma spp. 

positivity. The Kappa concordance index value (0.72) indicates high concordance among 

the results from all three extraction methods(20). Therefore, blood volume standardization 

and modification of the reference protocol(14) produced equivalent results in the MCP and 

the commercial kits. Future research could determine if the MCP is also effective at 

detecting other pathogens found in the blood of cattle and other animals. 

 

 

The MCP also allowed DNA extraction from Anaplasma spp. from bovine blood samples 

at considerably less cost than the tested commercial kits. This relative cost effectiveness 

is based on the cost of reagents from authorized suppliers in Ecuador. Extraction of DNA 

from 250 blood samples using the MCP would cost approximately US$ 60, considering 

only reagents. In contrast, the cost of processing the same number of samples with the 

tested commercial kits would be US$ 600 with the Bioneer® kit and US$ 2,000 with the 

Qiagen® kit; again this includes only reagents and not the equipment needed to run the 

extraction (the Bioneer® kit requires its own specialized equipment). 

 

 

One of the principal reasons for the high cost of reagents in countries such as Ecuador, 

Colombia and Mexico, among others, is that they are not manufactured in Latin America. 

Import fees and the commissions charged by local suppliers therefore greatly increase the 

cost of scientific analyses. A chronic lack of financial resources is perhaps the greatest 

limiting factor when attempting to carry out research in developing countries. Functioning 

under these circumstances requires creative development of reliable low-cost techniques 

for infectious disease research and monitoring. This is an important challenge to 
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overcome to better understand disease epidemiology, and to design and implement 

effective control/monitoring plans that benefit animal production and protect exposed 

human populations. 

 

 

The low-cost modified Chelex® resin protocol developed here for DNA extraction from 

hemolyzed and clotted blood produces DNA of high quality for molecular detection of 

Anaplasma spp. by PCR. Results are equivalent to those obtained with commercial kits. 

The proposed protocol is ideal for monitoring Anaplasma spp. in cattle under limited 

research and/or disease control budgets. Creation of alternative low-cost protocols for 

pathogen detection and molecular analysis makes research more accessible, even under 

the conditions prevailing in developing countries. This will increase the ability of 

livestock sector and public health agencies to proceed efficiently and effectively. 

Considering the cost effectiveness of the modified Chelex protocol (MCP), it is well 

worth testing its usefulness in detecting other pathogens and its extraction efficiency with 

other sample types. 
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