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Abstract: 

The study aimed to compare two grouping strategies for unknown parents or phantom 

parent groups (PPG) on the genetic evaluation of growth traits for Mexican Braunvieh 

cattle. Phenotypic data included birth (BW), weaning (WW) and yearling (YW) weights. 

Pedigree included 57,341 animals. The first strategy involved 12 PPG (G12) based on the 

birth year of the unknown parent’s progeny and the sex of the unknown parent, while the 

second involved 24 PPG (G24) based on the birth year of the unknown parent’s progeny 

and 4-selection pathways. The animal models included fixed effects and the random direct 

additive genetic effect; WW also included random maternal genetic and maternal 

permanent environmental effects. Product-moment correlations between EBV from G0 

(no PPG) and G12 were 0.96, 0.77 and 0.69 for BW, WW and YW, respectively, and 

between EBV from G0 and G24 were 0.91, 0.54, and 0.53, respectively. Corresponding 

rank correlations between G0 and G12 were 0.94, 0.77, and 0.72, and between G0 and 

G24 were 0.89, 0.61, and 0.60. Genetic trends showed a base deviation from the genetic 
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trend of G0, except for BW of G12. The results did not support the use of the two grouping 

strategies on the studied population and traits, and further research is required. 

Introducing PPG to the model, enough phenotype contribution from descendants to PPG, 

and avoiding collinearity between PPG and fixed effects are important. Genetic groups 

should reflect changes in the genetic structure of the population to the unknown parents, 

including different sources of genetic materials, and changes made by selection over time.  
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Introduction 
 

 

Mexican Braunvieh is a dual-purpose breed of cattle. Since June 2003, national genetic 

evaluations for growth traits have been undertaken for this breed in Mexico(1). Like in any 

livestock population, there are unknown parents in the pedigree. Unknown parents are 

assumed to be unrelated, non-inbred, and to have a single descendant. Unknown parents 

might correspond to base animals in the first generation or spread over generations. They 

affect genetic progress in several ways: (i) reducing selection intensity for animals with 

unknown parents, (ii) parentage uncertainty decreases the accuracy of genetic 

evaluations, (iii) miss-identification of parents yields both biased estimated breeding 

values (EBV) and heritability estimates(2). Best linear unbiased prediction (BLUP) 

regresses genetic merit predictions of animals to unknown parents of mean zero. 

Depending on the genetic background, and the generation to which unknown parents 

belong to, their expected genetic merit could be different from zero. Quass(3) established 

a methodology for considering phantom parent groups (PPG) or genetic groups in BLUP. 

Although PPG are not of interest per se, they are considered to facilitate modeling and 

computation(4). Furthermore, along with statistical correction for non-random missing 

pedigree information, PPG enables direct estimation of quantitative genetic parameters(5).  

Because there are no specific rules for determining PPG, its definition is mainly based on 

the researcher’s criteria, but it usually includes a time component(6). Other factors 

commonly considered in grouping strategies are the sex of the parent or selection 

intensity(4,7,8). All descendants of an individual with PPG contribute to the estimation of 

the PPG effect(5), so having PPG with an equal number of individuals is unlikely to affect 

the animal model’s ability to estimate the PPG effect with acceptable precision. However, 

any strategy for assigning unknown parents to PPG should reflect the average genetic 

level of unknown parents(9). 
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Due to the inclusion of PPG in the model, Theron et al(7) observed a significant change 

and a reduction of bias in the genetic trend of milk yield for South African Holsteins. 

Similarly, a reduction in EBV bias was detected by including PPG in the genetic analyses 

for weaning, post-weaning and yearling weights, scrotal circumference, and muscling 

score in Nelore cattle(10). The purpose of this study was to compare two strategies of 

grouping unknown parents to PPG on the genetic evaluation of growth traits in Mexican 

Braunvieh cattle. 

 

 

Material and methods 
 

 

Data 

 

 

Pedigree and phenotypic records on Mexican Braunvieh cattle were obtained from 

Asociación Mexicana de Criadores de Ganado Suizo de Registro (Mexico City). 

Phenotypic records were birth (BW), weaning (WW), and yearling weights (YW) from 

animals born between 1985 and 2017, in 229 farms across Mexico. Weaning and yearling 

weights were adjusted to 240 d and 365 d of age, respectively, according to the procedure 

proposed by the Beef Improvement Federation(11). Records outside the mean ± 3 SD range 

for the trait of interest were not included in the analyses. Also, WW and YW records 

outside 240 ± 45 d and 365 ± 45 d age were excluded from the analyses, respectively. The 

pedigree was extracted (parents), starting from animals with an available phenotype (for 

any of the three traits), and limited to animals born since 1970. Final pedigree included 

57,341 individuals, 18,689 males, 38,652 females, 2,746 sires, and 27,015 dams. 

 

Contemporary groups were formed considering herd, year, and season of birth (rainy or 

dry). Records from contemporary groups with less than four animals were excluded from 

the analyses. Table 1 shows the final number of records and descriptive statistics for each 

trait. 

 

Table 1: Descriptive statistics for growth traits in the Mexican Braunvieh population 

Trait N Minimum Mean ± SD Maximum 

Birth weight 31,654 23.00 38.11 ± 4.84 53.00 

Weaning weight 21,333 100.59 235.07 ± 42.85 372.62 

Yearling weight 14,439 146.66 324.07 ± 56.07 504.84 
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Genetic analyses 

 

 

The genetic analyses comprised estimation of genetic parameters and BLUP(12) for the 

Mexican Braunvieh population, using the following single-trait models: 

 

 y = Xb + Z1u + e,   (1) 

for BW and YW, and 

 

y = Xb + Z1u + Z2m + Z3mpe + e,  (2) 

for WW, where y, b, u, m, mpe, and e are vectors of phenotypic records, fixed effects, 

direct additive genetic, maternal additive genetic, maternal permanent environmental, and 

residuals effects, respectively. X, Z1, Z2, and Z3 are incidence matrices relating records 

to b, u, m, and mpe, respectively. The fixed effects were: 

 

bBW = [sex, Braunvieh purity, age of dam, (age of dam)2, birth contemporary group] 

bWW = [sex, Braunvieh purity, age of dam, (age of dam)2, pre-weaning contemporary 

group, milk feeding condition] 

bYW = [sex, Braunvieh purity, post-weaning contemporary group, post-weaning feed] 

 

There were 1,778, 1,450, and 1,038 birth contemporary groups, pre-weaning 

contemporary groups, and post-weaning contemporary groups, respectively. Milk feeding 

conditions were suckling without milking, suckling with additional milking, and feeding 

with a milk substitute. Post-weaning feed regimes were grazing, semi-confined, and total 

confinement. The sex ratios were close to 1. Age of dam at calving had a minimum, mean, 

SD, and maximum of 1.70, 6.64, 3.04, and 17.00 yr, respectively. Braunvieh purity had a 

minimum, mean, SD, and maximum of 0.88, 0.99, 0.01, and 1.00, respectively. It was 

used the official models for the evaluation of the studied traits in Mexican Braunvieh 

cattle. The (co)variance structures were: 
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for WW, where A is the pedigree-based additive genetic relationship matrix, INd and IN 

are identity matrices of order equal to the number of dams and observations. 𝜎𝑢
2, 𝜎𝑚

2 , 𝜎𝑚𝑝𝑒
2 , 

and 𝜎𝑒
2 are the direct additive genetic, maternal additive genetic, maternal permanent 

environmental, and residual variances, respectively. Applying PPG, the term Z1Qg is 

added to the model (Eq. [1] and Eq. [2]), where g is the vector of PPG effects, and Q is 
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the matrix relating animals to PPG. Variance components were obtained without PPG, 

based on derivative-free REML, using the MTDFREML software(13).  

 

 

Genetic groups 

 

 

Evaluation of the genetic grouping strategies was carried out through the comparison of 

EBV from BLUP with and without PPG. Criteria used to form unknown parents’ groups 

were:  

 

1) Year of birth: Year of birth of the unknown parent was five years before the year of 

birth of its progeny. Unknown parent birth years were grouped into six classes: 1965-69, 

1970-74, 1975-79, 1980-84, 1985-89, and 1990-96. 

2) Sex of the unknown parent. 

3) Selection pathway (sire of sire, sire of dam, dam of sire, and dam of dam). 

 

The two genetic grouping strategies were:  

G12: Class of birth year (6 levels) × sex of the unknown parent (2 levels). 

G24: Class of birth year (6 levels) × pathway of selection (4 levels). 

 

Genetic groups based on criteria such as sex of missing ancestor or paths of selection 

allow evaluation of different genetic selection differentials(4). Likewise, the inclusion of 

the year of birth category allows us to model the genetic improvement over time(3,7). Table 

2 shows the number of unknown parents in each PPG for each strategy.  

 

Table 2: Criteria and frequency of unknown parents in phantom parent groups 

Strategy1 
Unknown 

 parent 

Year group2 

1965- 

1969 

1970- 

1974 

1975- 

1979 

1980-

1984 

1985-

1989 

1990-

1996 

G12 
Sire 540 513 820 941 678 433 

Dam  647 457 664 891 564 35 

G24 

Sire of sire 119 58 72 90 87 143 

Sire of dam 421 455 748 851 591 290 

Dam of sire 145 57 51 84 73 9 

Dam of 

dam 
502 400 613 807 491 26 

1 Phantom parent group with 12 (G12) and 24 (G24) levels. 
2 Progeny’s birth year – 5. 

 

Without including PPG in the model, the mixed model equations were (for BW and YW): 

[𝐗′𝐗 𝐗′𝐙
𝐙′𝐗 𝐙′𝐙 + 𝐀−1𝜆

] [𝐛̂
𝐮̂

] = [
𝐗′𝐲

𝐙′𝐲
],                                 (3) 
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where 𝜆 =  𝜎𝑒
2/𝜎𝑢

2. Adding the effect of PPG to the model, the mixed model equations 

become(3): 

[

𝐗′𝐗 𝐗′𝐙 𝐗′𝐙𝐐

𝐙′𝐗 𝐙′𝐙 + 𝐀−1𝜆 𝐙′𝐙𝐐

𝐐′𝐙′𝐗 𝐐′𝐙′𝐙 𝐐′𝐙′𝐙𝐐

] [
𝐛̂
𝐮̂
𝐠̂

] = [

𝐗′𝐲

𝐙′𝐲

𝐐′𝐙′𝐲

].    (4) 

Incorporating PPG effects into the genetic merit of animals (i.e., EBV = û + Qĝ) can be 

made directly in the mixed model equations, using Quaas and Pollak(14) transformation 

that involves absorption of PPG equations, which gives(3): 

[
𝐗′𝐗 𝐗′𝐙 𝟎
𝐙′𝐗 𝐙′𝐙 + 𝐀−1𝜆 −𝐀−1𝐐𝜆

𝟎 −𝐐′𝐀−1𝜆 𝐐′𝐀−1𝐐𝜆

] [
𝐛̂

𝐮̂ + 𝐐𝐠̂

𝐠̂

] = [
𝐗′𝐲

𝐙′𝐲
𝟎

].    (5) 

 

This procedure avoids the extra step of calculating û + Qĝ after Eq. [4], and the need for 

re-creating matrix Q, which is computationally expensive. Quaas and Pollak(14) 

transformation is not implemented in MTDFREML software. Therefore, Eq. [3, 4] were 

applied for BLUP with and without PPG, respectively (additional terms of the maternal 

genetic and maternal permanent environmental effects were involved for WW). 

Estimated breeding values accounting for PPG (û + Qĝ) were obtained using functions 

“qmat” and “Qgpu” from R package “ggroups”(15), where the matrix of PPG contributions 

to individuals in a pedigree (Q) was calculated, and PPG contributions (Qĝ) were added 

to the genetic merit of animals (û), with ĝ and û obtained from MTDFREML(13). 

 

 

Grouping strategy comparisons 

 

 

Comparisons between grouping strategies were made by: 

Pearson product-moment and Spearman rank correlations between EBV obtained with 

and without PPG. 

Genetic trends obtained for each analysis, by averaging EBV per birth year. 

 

 

Results and discussion 
 

 

There were 3,925 animals with unknown sire, 3,258 animals with unknown dam, and 

2,430 animals with both unknown sire and dam. Unknown parents were assigned to 12 

or 24 PPG (G12 and G24; Table 2). Variance components obtained with and without PPG 

are shown in Table 3. Estimates of parameters for the studied traits under different 

scenarios were closely similar. Thus, the model choice should not interfere with the 

estimation of genetic parameters.  
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Table 3: Variance components for birth weight (BW), weaning weight (WW) and 

yearling weight (YW) for the Mexican Braunvieh population estimated with 12 (G12), 

24 (G24) and without (G0) phantom parent groups 

Strategy Trait 𝝈𝒖
𝟐  𝝈𝒎

𝟐  𝝈𝒎𝒑𝒆
𝟐  𝝈𝒆

𝟐 

G0 

BW 2.69 - - 8.54 

WW 87.76 8.80 23.12 435.85 

YW 86.27 - - 692.96 

G12 

BW 2.69 - - 8.53 

WW 83.14 8.43 23.06 436.58 

YW 81.30 - - 695.01 

G24 

BW 2.71 - - 8.52 

WW 90.27 10.09 21.37 435.37 

YW 85.72 - - 692.52 

𝜎𝑢
2= additive genetic variance, 𝜎𝑚

2  = maternal genetic variance, 𝜎𝑚𝑝𝑒
2 = maternal permanent environmental 

variance, 𝜎𝑒
2= residual variance. 

 

Theron et al(7) reported that the inclusion of PPG has a minor influence on the estimation 

of co(variance) components, also, Shiotsuki et al(16) showed that the use of a relationship 

matrix that includes genetic groups does not generate differences in the variance estimates 

contrasted with the use of a matrix without genetic groups. In some studies(7,8,10) variance 

components were obtained considering a "control" model, which did not include genetic 

groups, and those variance components were used in predicting breeding values in a 

model including PPG, similar to the procedure applied in this research. 

 

Descriptive statistics for EBV obtained with models including or excluding PPG are 

shown in Table 4. In a basic animal model, the existence of a single genetic group is 

assumed(17). Given that breeding values are deviations from the genetic group mean, all 

values in the base population have an expectation of zero(5,17). Genetic group methodology 

allows to assign genetic effects to multiple groups within the base population, which 

could have a different mean(5). The EBV including genetic groups considers that each 

individual inherits the mean of the effects in the genetic group of their parents plus the 

mean of the genetic value of their parents; therefore, the expectation of EBV for the 

population is not zero(5,17) because the assumption of breeding values distribution is not 

met. Assigning unknown parents to PPG with a possibly non-zero average of genetic 

merit would change their descendants’ EBV. Consequently, the expected mean of the 

EBV obtained after considering genetic groups change to the product Qg(3). 
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Table 4: Descriptive statistics of estimated breeding values for growth traits obtained 

with 12 (G12), 24 (G24) and without (G0) phantom parents groups for Mexican 

Braunvieh cattle 

Strategy Trait Minimum Mean ± SD Maximum 

G0 

BW -5.36 0.03 ± 0.79 5.13 

WW -26.67 -0.17 ± 3.87 25.32 

YW -24.06 0.32 ± 3.39 24.34 

G12 

BW -5.24 0.31 ± 0.83 5.37 

WW -18.73 14.19 ± 5.20 39.77 

YW -50.60 -7.77 ± 4.81 18.08 

G24 

BW -3.67 2.06 ± 0.88 7.57 

WW -53.15 -10.75 ± 8.17 32.23 

YW -49.13 31.10 ± 7.27 82.12 

BW= Birth weight, WW= Weaning weight, YW= Yearling weight. 

 

Pearson product-moment and Spearman rank correlations between EBV with and without 

PPG are shown in Table 5. Correlation coefficients between EBV without PPG (G0) and 

G12 were higher than those of G0 and G24, for all the traits and groups of animals (i.e., 

males and females, with and without phenotype). The correlations were lower for animals 

without phenotype than with phenotype, and lower for females than males. Generally, the 

correlations were higher for BW than for WW, and higher for WW than for YW (Table 

5). 

 

It has been proposed that correlation coefficients between EBV lower than 0.90 could 

change the ranking of animals for genetic evaluation(18). Estimates of correlation 

coefficients obtained here suggest possible changes in the ranking mainly for WW and 

YW. Petrini et al(8) also remarked changes in the rank for WW due to the inclusion of 

PPG (Pearson and Spearman correlation estimates ranged from 0.50 to 0.70). On the other 

hand, the inclusion of PPG resulted in small changes in the ranking for BW in this study. 

Results for BW agree with what was observed for milk production(7), YW, and post-

weaning weight gain(16), scrotal circumference, or muscle score(8). Rank changes are due 

to the shifts that genetic groups make in the EBV of their descendants. 

 

Figure 1 illustrates the effect of PPG on genetic trends. The trends were relatively similar 

for males and females. For BW, G12 increased the slope of the genetic trend, compared 

to G0; G24 also increased the slope of the genetic trend, but it showed a base deviation 

from G0. For WW, both G12 and G24 showed large fluctuations in the early years. 

Genetic trends from G12 and G24 showed positive and negative base differences with 

G0, respectively (Figure 1). For YW, the genetic trend of G24 showed a large base 

deviation from the G0 and G12 genetic trends (Figure 1). Generally, if a genetic trend 

does not pass over zero, it indicates a base problem for EBVs. Therefore, G24 is ruled out 

for BW and YW, and G12 is ruled out for WW, since G24 does not cross zero for BW 

and YW, and G12 does not cross zero for WW (Figure 1). On the other hand, a robust 
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grouping strategy is expected to perform well for different traits(16), as a trait-specific 

grouping strategy would be a burden for routine genetic evaluations. 

 

Table 5: Pearson (and Spearman) correlation coefficients between estimated breeding 

values without phantom parent groups (EBV_G0), with 12 phantom parent groups 

(EBV_G12), and 24 phantom parent groups (EBV_G24), in the Mexican Braunvieh 

population 

 Trait 

Correlation type Birth weight Weaning weight Yearling weight 

Total animals n =57,341  n = 57,341 n = 57,341 

r(EBV_G0, EBV_G12) 0.959 (0.942) 0.766 (0.766) 0.692 (0.717) 

r(EBV_G0, EBV_G24) 0.912 (0.891) 0.538 (0.610) 0.535 (0.605) 

    

Males with phenotype  n = 15,810  n = 10,748 n = 7,384 

r(EBV_G0, EBV_G12) 0.988 (0.982) 0.914 (0.886) 0.853 (0.846) 

r(EBV_G0, EBV_G24) 0.975 (0.964) 0.786 (0.763) 0.743 (0.737) 

    

Males without phenotype n = 2,879 n = 7,941 n = 11,305 

r(EBV_G0, EBV_G12) 0.941 (0.923) 0.796 (0.797) 0.719 (0.760) 

r(EBV_G0, EBV_G24) 0.861 (0.830) 0.606 (0.627) 0.587 (0.636) 

    

Females with phenotype n = 15,844 n = 10,585 n = 7,055 

r(EBV_G0, EBV_G12) 0.986 (0.979) 0.901 (0.879) 0.844 (0.840) 

r(EBV_G0, EBV_G24) 0.972 (0.960) 0.752 (0.749) 0.710 (0.743) 

    

Females without phenotype n = 22,808 n = 28,067 n = 31,597 

r(EBV_G0, EBV_G12) 0.895 (0.877) 0.635 (0.659) 0.596 (0.634) 

r(EBV_G0, EBV_G24) 0.799 (0.781) 0.407 (0.491) 0.445 (0.515) 
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Figure 1: Genetic trends of growth traits for BLUP (EBV (solid line)), BLUP with 12 

phantom parent groups (EBV_G12 (dashed line)), and BLUP with 24 phantom parent 

groups (EBV_G24 (dotted line)), with six classes of birth year considered in phantom 

parent groups 

 

 
 

However, in practice, a grouping strategy may perform well for a trait, but not well for 

another trait, especially if the fixed effects are different for the two traits(8). Possible 

problems with PPG implementation are likely to be due to collinearity or confounding 

between PPG and fixed effect(3,5). Considering PPG as random effect is a solution to this 

problem. 

 

The effect of inclusion of PPG on the genetic trend has been variable. Theron et al(7) 

showed that including PPG in genetic evaluation had a drastic effect on the genetic trend 
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for milk production traits, having a higher response (almost double) when PPG was 

included. Besides, Shiotsuki et al(16) observed higher genetic trends for post-weaning 

weight and YW when the model included PPG. In contrast, PPG inclusion in genetic 

analyses for WW, scrotal circumference, and muscling score showed a lower genetic 

trend than when PPG was not included(8). It could be concluded that the effectiveness of 

PPG on genetic evaluations depends on the population structure, studied traits and criteria 

adopted to define PPG. It has been proposed that the definition of PPG should balance 

between the complexity of genetic groups and the representation of genetic differences(8). 

Also, genetic groups should consider the selection criteria adopted by breeders. 

 

Two possible reasons are considered for the problems observed with the genetic trends: 

the shortage of progeny phenotypes supporting the inference of some PPG, and possible 

confounding or collinearity between PPG and the fixed effects in the model, especially 

contemporary groups. Figure 2 shows the frequency of animals, missing sires, and 

missing dams across birth years, and Figure 3 shows the frequency of phenotypes per 

birth year. It can be interpreted that there were not enough phenotypes supporting the 

prediction of PPG solutions in early years (unknown parents born before 1990, i.e., their 

progeny born before 1995). The phenotypes’ contribution decreases as the number of 

generations between the PPG and the phenotyped descendant increases, lower with lower 

heritability.  

 

Figure 2: Number of animals (solid line), unknown sires (dashed line) and unknown 

dams (dotted line) per year of birth 
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Figure 3: Number of birth weight (solid line), weaning weight (dashed line), and 

yearling weight (dotted line) phenotypes per year of birth 

 
 

Figure 2 shows that the studied population was not in real need of PPG in the animal 

model, or PPG could be limited to only a few groups, so that phenotypes from distant 

generations of descendants could support the estimation of those few PPG. Animal 

models with PPG are more beneficial to populations with a higher and broader prevalence 

of missing pedigree information, especially if different genetic backgrounds (e.g., 

imported genetic materials) or different selection strategies/pressure are involved in 

different groups of animals (e.g., males vs. females or different selection pathways). The 

genetic trends (Figure 1) show that the population has not been under efficient selection, 

and there is an excellent opportunity for genetic improvement toward sustainable 

production in Mexican production systems and environments. Figures 2 and 3 also show 

data collection problems between years 2003 and 2014, and between 2014 and 2017. Data 

completeness and correctness are essential for accurate and reliable genetic evaluations. 

As mentioned in the Data subsection, pedigree (parentage) was extracted, starting from 

phenotyped animals. The number of animals and missing parents (Figure 2) were higher 

without this restriction. However, in that case, there were extra missing parents with no 

contribution from progeny performance; therefore, no information to make inferences 

upon them. It is recommended to extract pedigree from phenotyped animals, making 

decisions about forming genetic groups, then adding animals that had not been extracted 

and assigning their unknown parents to the existing PPG.  

 

Ideally, there should be fixed group connectedness between different PPG (i.e., like the 

concept of genetic connectedness among fixed groups (levels of a fixed effect)). In other 

words, phenotypes from different groups of fixed effects should contribute information 

to different PPG. It has even been recommended to form (some) PPG composite of both 

sires and dams(8). The R package “ggroups”(15) allows to perform PPG from both sexes. 

Similar definitions of PPG and some fixed effects may cause collinearity. In that situation, 
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the number of fixed-effect groups contributing information to each PPG decreases. One 

way of checking the collinearity within and between fixed effects and PPG is checking 

the minimum eigenvalue of [X   Qp]ʹ[X   Qp], where Qp is Q with rows limited to 

phenotyped animals. Estimability problems for PPG in the model are not limited to this 

study. Such problems are often observed due to confounded effects (collinearity) between 

PPG(19). Even, reducing such confounding by changing the composition of PPG, there 

might be confounding between PPG and other fixed effects. Those estimability problems 

were removed and estimated breeding values look normal by considering PPG as random 

effects via adding 𝜎𝑒
2/𝜎𝑢

2 to the diagonals of the PPG equations in the animal model(19). 

 

 

Conclusions and implications 
 

 

Two strategies of grouping unknown parents to PPG (G12 and G24) were tested on BW, 

WW, and YW in Mexican Braunvieh cattle. The two strategies used the most common 

criteria for defining PPG (birth year of the progeny, sex of the unknown parent for G12, 

and selection pathway for G24). Genetic trends had an offset deviation from BLUP´s 

genetic trend without PPG, except for BW of G12. Also, including PPG in the model may 

have caused collinearity between PPG and some fixed effects. The shortage of phenotypes 

supporting the solutions for some PPG effects was another reason for the lack of benefit 

from the two grouping strategies on the studied population and traits. It is recommended 

to define PPG based on a subset of pedigree, in which parents are connected to 

phenotyped descendants, then adding the rest of animals and assigning their unknown 

parents to the existing PPG, to avoid an excessive and unnecessary number of genetic 

groups. More important than the number of progeny per PPG or equal year intervals 

defining PPG, is the amount of phenotype contributions for predicting PPG effects. It is 

recommended to have less overlap between PPG definitions and fixed effects to reduce 

collinearity between them. 
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