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Abstract: 

This study aimed to determine the frequency of contamination, serovar diversity, and 

multilocus sequence typing (MLST) of Salmonella enterica (SE) in lymph nodes and 

ground beef. A total of 1,545 samples from 400 beef carcasses were analyzed. Samples 

included peripheral (PLN) and deep lymph nodes (DLN), lean and fatty ground beef 

obtained in warm (April-July) and cold (September-December) seasons during 2017 and 

2018. The pure isolates were subjected to complete genome sequencing. With these data, 

the in silico prediction of serovars and the MLST profile was performed. In total, 78 SE 

isolates were obtained (5 % of the total analyzed samples). The frequency of contamination 

was associated with the type of sample (χ2=23.7, P<0.0001) and the time of year (χ2=20.3, 

P<0.0001), being higher in PLN (9.7%) and during the warm season (7.0%). The 

predominant serovars were Anatum and Reading (each one with n= 23), Typhimurium (n= 

11), and London (n= 9). The MLST profile of strains of the Typhimurium (ST 19 and 34) 

and Kentucky (ST 198) serovars has been previously reported in isolates involved in 

clinical cases. It was concluded that lymph nodes and ground beef are reservoirs of SE of 

public health importance, especially during the warm months of the year. Therefore, it is 

necessary to establish measures to prevent dissemination throughout the production chain 

of strains associated with apparently healthy animals. 
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Introduction 
 

 

Foodborne salmonellosis is a public health concern worldwide(1). The meat of different 

species, including beef, functions as a reservoir for its primary etiologic agent: Salmonella 

enterica subsp. enterica, from now on referred to as Salmonella(2). In North America, 

ground beef has been linked to recent salmonellosis outbreaks(3), which is why it is 

considered one of the main vehicles of human exposure to Salmonella. In Mexico, 

percentages of positive samples range between 16 and 68 % in ground beef at points of 

sale(4,5), which is why research in this area is relevant from a public health perspective. 
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Recent experimental data report Salmonella isolates from apparently healthy cattle lymph 

nodes, in frequencies that range from <10 to >90%(6,7). Furthermore, it has been proven that 

peripheral lymph nodes show a higher contamination rate as compared to deep lymph 

nodes, while the number of animals with contaminated lymph nodes is much higher in 

commercial feedlot cattle than in culled cattle(7,8). However, results tend to vary 

significantly across geographical areas and season of the year, a phenomenon determined 

by unknown mechanisms. 

 

In studies with Salmonella strains obtained from culled cattle, the typification of isolates by 

pulsed field gel electrophoresis showed clonality between lymph node and ground beef 

strains(9). However, this type of study has not been performed in commercial feedlot 

animals. 

 

Despite the high rates of positivity to Salmonella reported in bovine samples in Mexico(4-6), 

the contribution of lymph nodes to this phenomenon has not been addressed. Therefore, this 

study aimed to estimate the frequency of contamination and the diversity of Salmonella 

serovars in lymph nodes and the meat and fat associated with them at different seasons of 

the year. 

 

 

Material and methods 
 

 

Study design and sample size determination 

 

 

The sample size was calculated with the statistical equation used to estimate a population 

proportion when the number of elements in that population is unknown(10): 

n =
𝑍𝛼
2∗𝑝∗𝑞

𝑑2
      ; 

Where: n= sample size; Zα
2= Z value in a normal distribution Zα= 1.96 when α= 0.05; p= 

population proportion with the studied characteristic (if unknown, 0.5 is used, as in this 

case); q= population proportion without the studied characteristic (1-p); d= desired error or 

precision, fixed at 10% (0.1).  

Thus, it was obtained a sample size of 96, which was rounded to 100. The sampling was 

performed twice a year for two consecutive years, and in two seasons of each year.  The 

samples collected between April and July were labeled as “warm” season samples, and 

those collected between September and December were labeled as “cold” season samples. 
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Carcasses came from young bulls, crosses of Bos Indicus, with an average age of 24-36 

months, processed in a Federal Inspection type slaughterhouse in Veracruz, and transported 

under refrigeration (<4 ºC) for approximately eight hours, until they arrived at a selling 

point in Mexico City. Upon arrival, carcasses were kept under refrigeration for two days 

until sample collection (72 to 96 h postmortem). The sale point was visited each week on 

Monday and Tuesday until completing between five and ten carcasses per week, depending 

on the number of carcasses available. 

 

 

Sampling 

 

 

Peripheral (PLN, superficial cervical and subiliac) and deep lymph nodes (DLN, axillary 

and celiac) were collected from each carcass. Lymph nodes were selected based on the 

probability that they were included in the grinding process, due to their anatomical location. 

In addition to the lymph nodes, approximately 200 g of lean meat (LM, 50 % of the chuck 

roll and 50 % of the sirloin, as they are the most used cuts to produce ground beef) and fatty 

meat (FM) were collected from the surrounding areas of the PLN and DLN (approximately 

50 % of each). Before analysis, the individual portions of each sample type were combined 

to form a single sample. On some occasions, certain parts of the carcass were compromised 

for sale and were not available for sampling. Therefore, it was not possible to obtain all 

sample types of 100% of the carcasses. Thus, the sampling unit was defined as the sample 

composites of PLN, DLN, LM, and FM. A total of 1,545 samples were collected from all 

sources in the two years of the study.  

 

Table 1: Distribution of the 1,545 meat and lymph node samples analyzed by season and 

year between April 3, 2017 and December 14, 2018 

Sample type 

Warm season   Cold season  

2017  2018 Total  2017  2018 Total 

PLN 168 98 266  33 102 135 

DLN 166 98 264  33 102 135 

LM 130 98 228  33 102 135 

FM 149 98 247  33 102 135 

Total   1,005    540 

Warm season: April-July, cold season: September-December. 

PLN= peripheral lymph nodes, DLN= deep lymph nodes, LM= lean meat, FM= fatty meat. 
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The individual portions of each sample type were placed in previously identified sterile 

plastic bags and kept in coolers with cooling gels (at approximately 4°C) during their 

transportation to the laboratory (maximum two hours). 

 

 

Microbiological analysis 

 

 

Lymph node samples were prepared following the methods previously described(11), with 

some modifications. Lymph nodes were weighed and subsequently submerged in boiling 

water for 5 s to sterilize their surface. Then, half of the buffered peptone water (BPW) 

necessary to reach an approximate 1:10 dilution (8 g of DLN in 80 ml of BPW and 25 g of 

PLN in 225 ml of BPW) was added, and lymph nodes were ground for 3 s in a previously 

sterilized Oster blender. The ground samples were emptied in a previously identified 

Stomacher® bag, and, using the rest of the BPW, the remainder contained in the blender 

was recuperated, assuring the transfer of the whole sample to the Stomacher® bag, 

subsequently homogenizing the mixture for 1 min. 

For the analysis of the lean meat (LM) samples, 25 g were ground in a sterile Oster blender 

for 30 s. Subsequently, the content was placed in a previously identified Stomacher® bag 

with 225 ml of BPW, and the mixture was homogenized for 1 min. Finally, fatty meat (FM) 

samples were ground in a sterile Oster blender for 30 s, approximately 1/3 of fat and 2/3 of 

meat from the surrounding areas of PLN and DLN (50 % from each type of lymph node). 

After grinding, 25 g were aseptically weighed and subjected to the same procedure 

described for lean meat. 

Homogenates were left to rest for two hours at room temperature, before following the pre-

enrichment, selective enrichment, isolation, and biochemical confirmation procedures for 

Salmonella spp., established in the current Official Mexican Standard(12). According to 

previously described methods, presumptive positive Salmonella spp. isolates were also 

molecularly confirmed by PCR using the invA gene (284 bp)(13). DNA was extracted with 

the Ez-10 Spin Column Bacterial Genomic DNA Miniprep Kit (BioBasic, Inc., Canada), 

following the instructions of the supplier,  from pure strains, previously refreshed in tryptic 

soy broth (MCD Lab®, PRONADISA-CONDA®, Spain) for 18-24 h. Forward 

(CGCCATGGTATGGATTTGTC) and reverse (GTGGTAAAGCTCATCAAGCG) 

primers were used in PCR with a total volume of 10 μl, employing the MyTaqTM Mix 

reagents (Bioline, U. K.) with the following final concentrations: 5 μl of MyTaqTM Mix, 0.2 

μl of each dNTP, and 2.1 μl of nuclease-free water. The thermocycling conditions were: 94 

ºC/3 min of initial denaturation; 35 denaturation, annealing, and extension cycles (95 ºC/45 

s, 62 ºC/30 s, 72ºC/45 s, respectively), and a final extension at 72 ºC/2 min.  The PCR 

amplified products were subjected to a 2% agarose gel electrophoresis (SeaKem® LE 
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Agarose, Lonza, USA). Gels were run in a Tris/borate/EDTA buffer (TBE 1x) at 80 V for 

50 min using SYBR Safe DNA Gel Stain (Invitrogen, USA) to reveal the DNA fragments. 

The visualization and digitization of images were performed in a Gel Logic 2200 imaging 

system (Kodak, USA) with the Care Stream® software (Carestream Health, Inc., USA). In 

each run, it was included a strain, from the laboratory, of S. enterica subsp. enterica ser. 

Typhimurium, previously confirmed by biochemical methods, PCR, and whole-genome 

sequencing. Confirmed isolates were preserved in two ways. In the first one, 1 ml inocula 

were prepared by taking fresh colonies and mixing them in brain-heart infusion broth 

(Merck, Germany) with 10% glycerol and kept at -70 °C in an ultra-low freezer. Moreover, 

a backup of the isolates was kept in tryptic soy agar (TSA, PRONADISA-CONDA®, 

Spain) at room temperature. 

 

 

Serovar prediction and multilocus sequence typing (MLST) 

 

 

The serovar of the obtained strains was predicted from the whole genome sequencing data 

(raw reads). Genomic DNA was extracted from fresh colonies in TSA broth with agitation 

at 37 °C for approximately 18 h. Then, it was centrifuged 1 ml of TSA broth at 5,000 xg for 

10 min to obtain a cell pellet. Subsequently, following the instructions provided by the 

manufacturer, it was used the High Pure PCR Template Preparation Kit (Roche Molecular 

Systems, Inc., Switzerland) to obtain the genomic DNA. 

 

Sequencing was performed in an Illumina NextSeq (Illumina, USA) equipment, using the 

Nextera XT version 3 kit (Illumina, USA) to prepare the DNA library, with an insert of 150 

bp and a minimum estimated depth of 30X.  The obtained raw reads were used to predict 

the serovar through in silico analysis, with the help of the SeqSero program(14). Finally, a 

multilocus sequence typing (MLST) analysis was performed, based on seven house-

keeping genes (aroC, dnaN, hemD, hisD, purE, sucA)(15), in the server of the Center for 

Genomic Epidemiology(16). As MLST has been used for decades and there is a public 

access database(17), it is possible to estimate the epidemiological importance of the isolates 

through comparison with the ST previously reported in human and animal clinical samples. 

Furthermore, the allele profile was used to create a minimum spanning phylogenetic tree, 

using the GrapeTree(18) program, to analyze the ST diversity in the sample under study. 
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Statistical analysis 

 

 

To determine if there was an association between the type of sample, the season of year, 

and the Salmonella serovar with the frequency of contamination, it was employed a chi-

square test. If a significant association was observed, the odds ratio was used to estimate 

the factors with the greatest influence on the contamination rate of the different studied 

matrices. Data were analyzed using the Statgraphics Centurion XV program (StatPoint, 

Technologies, USA). 

 

 

Results 
 

 

Overall, it was observed a 5% Salmonella spp. contamination frequency, with 78 isolates 

obtained from the 1,545 samples analyzed in the two years (Figure 1). A strong association 

between the sample type and the pathogen positivity was observed (χ2=23.7, P<0.0001), 

with a higher probability of finding positive samples in PLN than in other sources (odds 

ratio 3.2, 95 % confidence interval 2.0-5.0, P<0.0001). 

 

Figure 1: Frequency of contamination with Salmonella spp. in bovine samples of lean meat 

(LM, n=363), fatty meat (FM, n=382), deep lymph nodes (DLN, n=399), and peripheral 

lymph nodes (PLN, n=401), collected between April 2017 and December 2018 
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There was also a significant association between the frequency of contamination and the 

season of year (χ2=20.3, P<0.0001). The probability of finding positive samples in the 

warm season was much higher than in the cold season (odds ratio 4.7, 95 % confidence 

interval 2.2-9.8, P<0.0001) (Figure 2). 

 

Figure 2: Frequency of contamination with Salmonella spp. in bovine samples of lean meat 

(LM, n=363), fatty meat (FM, n=382), deep lymph nodes (DLN, n=399), and peripheral 

lymph nodes (PLN, n=401), collected between April 2017 and December 2018 
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Figure 3: Number of S. enterica subsp. enterica isolates by serovar and source in the warm 

(a) and cold (b) season. LM: lean meat (n=363), FM: fatty meat (n=382), DLN: deep lymph 

nodes (n=399), PLN: peripheral lymph nodes (n=401) 
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considered a clonal complex, as they coincide in six of the seven alleles included in the 

MLST scheme(15). 

 

Figure 4: Minimum spanning phylogenetic tree obtained from the MLST profile of 78 

isolates of S. enterica subsp. enterica. 

 

 
 

Each circle corresponds to a ST, and the divisions inside correspond to an isolate. The numbers in the tree 

branches indicate the number of alleles with different sequences between ST. Serovars are color-coded, and 

the source of isolation is indicated inside or adjacent to each circle (in red text, if they come from the warm 

season; or in blue, if they come from the cold season). 
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94 %)(6,19,20). However, the variability of this phenomenon between geographical areas and 

season of the year is well documented(20,21). Overall, the study confirms the importance of 

apparently healthy cattle as a reservoir of various Salmonella serovars of epidemiological 

importance. This is demonstrated by the detection of ST 19 and 34 of the Typhimurium 

serovar, which are associated with human clinical cases and with the globally distributed 

DT104 strain(22). Similarly, isolates of the Kentucky serovar (ST 198) have been associated 

with human and animal infections in the United States(23). These findings highlight the need 

to continue investigating Salmonella populations of non-clinical origin, associated with 

animal production, due to their role as a reservoir of human infections. 

 

The results also support previous observations on the higher positivity rates to the pathogen 

in peripheral lymph nodes, especially in warm climate conditions(7,8). Although the 

environmental factors responsible for this variability have not been deciphered, the higher 

incidence of flies and other insect bites during the summer has been suggested as a 

conditioning factor of this seasonal variation(19,24). However, the scant experimental 

evidence related to this factor does not come from natural contexts but from challenge 

studies with flies artificially infected with Salmonella.  

 

The efforts made so far to prevent asymptomatic Salmonella infection in cattle have been 

unsuccessful. The use of vaccines based on genes involved in the uptake of iron, a mineral 

with a central role in the infectious process, had no effect on the frequency of 

contamination in the lymph nodes of fattening cattle(25). This is not an unexpected finding, 

considering the functional redundancy of Salmonella, which has multiple genes for the 

uptake and transport of iron (iroBCDE, fepBCDEG, fhuBCD, exbBD, sitD, and tonB)(26). 

 

Moreover, the intracellular survival of the bacterium, internalized in eukaryotic cells 

vacuoles(27), such as macrophages, suggests that antibiotics are an unlikely strategy. Thus, 

the administration of increasing concentrations of tylosin in the diet of Holstein cattle, 

previously inoculated with the pathogen, did not show any effect, as Salmonella was still 

recovered from the lymph nodes of treated animals(28). 

 

Apparently, the functional redundancy of Salmonella and its intracellular survival 

mechanisms indicate that the eventual pathogen elimination will ultimately depend on the 

immune system of the host. In animals experimentally inoculated with strains of the 

Montevideo serovar, the total elimination of the bacteria took about a month(29). In this 

context, the screening of Salmonella subclinical infections in feedlots, a poorly applied 

measure, could function as a method to segregate carrier animals and limit the spread of the 

pathogen. Additionally, the presence of strains of the same serovar and ST in ground beef 

and lymph nodes, observed in this study, suggests removal of lymph nodes could be a good 

strategy to drastically reduce the frequency of contamination with Salmonella in ground 

beef. This measure is relatively easy to perform at slaughterhouses, although only for 
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peripheral lymph nodes, not for the deep lymph nodes.  However, it is precisely the 

peripheral lymph nodes that are of the greatest epidemiological relevance. Therefore, 

establishing this measure as mandatory in national regulations could function as a strategy 

to mitigate the risks associated with the presence of Salmonella in ground beef. 

 

Moreover, it is interesting to analyze why some serovars were only present in meat samples 

(e.g., Typhimurium), while others were detected in all matrices (e.g., Anatum and 

Reading). Notably, the Anatum serovar was previously reported as a predominant strain in 

non-clinical samples, especially in lymph nodes(19,20). These evidences suggest the 

possibility that some Salmonella strains are better adapted to colonize and survive in 

particular ecological niches. However, in the context of the present study, it is difficult to 

determine whether the relative representation of serovars in lymph nodes depends on 

specific genetic factors. It is also necessary to use analyses with greater discriminatory 

power than MLST to explore more precisely the intra- and interserovar phylogenetic 

relationships, and the evolutionary dynamics of these populations. This will be the focus of 

future contributions in the comparative genomics field. 

 

 

Conclusions and implications 
 

 

The study shows that the lymph nodes and ground beef from animals approved for 

slaughter are reservoirs of Salmonella enterica strains of clinical importance in humans. 

Therefore, it is necessary to establish control measures to prevent the spread of this 

pathogen throughout the production chain. 
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