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Abstract: 

This study aimed to estimate the response to selection through different selection indices 

between methane production and milk production and its components in specialized tropical, 

dual-purpose, and family dairy systems. Methane emissions were sampled during milking 

using the Guardian-NG gas monitor; milk samples were collected individually during 

methane sampling. DNA was extracted from the hair follicles of all the animals included in 

this study. The variance and covariance components were estimated using the mixed model 

methodology. Due to the incomplete genealogical information, molecular markers were used 

to build the genomic relationship matrix (Matrix G). The estimated heritability for methane 

emissions during milking was 0.18 and 0.32 for the univariate and bivariate analysis, 

respectively. The genetic correlation between the milk fat and protein percentages and 

methane emissions during milking was negative, -0.09 and -0.18, respectively. The response 

to selection, estimated through selection indices, demonstrated that it is feasible to reduce 

methane emissions up to 0.021 mg/L during milking in five generations without detriment to 

milk components. 
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Introduction 
 

In recent years, the Intergovernmental Panel on Climate Change (IPCC)(1) and the Food and 

Agriculture Organization of the United Nations (FAO)(2) declared that the agricultural sector 

is the principal source of short-lived greenhouse gases (GHG), such as methane (CH4) and 

nitrous oxide (N2O). 

 

Some strategies to mitigate methane emissions from dairy cattle include reducing the herd, 

changing bovine diet, using supplements, immunization against methanogenic archaea, and 

selecting animals with lower CH4 production(3).  

 

The selection of low methane-producing animals requires knowledge about the genetic 

correlations between methane production and other characteristics of productive and 

economic importance(4). 
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A selection index is a methodology that maximizes breeding for a specific trait(5). Selection 

indices have been widely used to estimate the reproduction value of dairy cattle for individual 

and combined characteristics for selection purposes(6). 

 

In cattle and sheep, the variation of CH4 emission has been demonstrated between individuals 

fed the same diet(7). De Haas et al(8) mentioned the possibility of selecting cows with low 

CH4 emissions since genetic variation suggests that the reductions would be 11-26 % in 10 

yr and could be even higher in a genomic selection program. However, the available 

information about the opportunities to mitigate enteric CH4 through genetic improvement is 

scarce. Still, the genetic selection of animals with low methane emissions could affect 

economically important production traits. 

 

This study aimed to estimate the response to selection through different selection indices 

between methane production and milk production and components in three dairy production 

systems in Mexico. 

 

 

Material and methods 
This study was carried out in three dual-purpose (DP) production units (PUs), two specialized 

tropical dairy (STD) PUs, and four family dairy (FD) systems (Table 1). Milk components 

and methane emissions were measured in 274 cows (98, 74, and 102 in the DP, STD, and FD 

systems, respectively). 

 

Table 1: Production systems sampled 

DP= dual-purpose; STD= specialized tropical dairy; FD= family dairy. 

HOZ= Holstein x Zebu, BSZ= Brown Swiss x Zebu, SMZ= Simmental x Zebu, HO= Holstein, BS= Brown 

Swiss, HOBS= Holstein x Brown Swiss. 

 

Two of the three DP PUs are located in the Medellín de Bravo municipality, Veracruz, and 

have a tropical savanna climate, Aw(o), and an altitude of 12 m asl(9). The annual mean 

Farm System n Localization Breeds 

La Posta DP 33 Veracruz HOZ and BSZ 

El Zapato DP 16 Veracruz HOZ 

La Doña DP 49 Puebla HOZ, BSZ, and SMZ 

Santa Elena STD 37 Puebla HO, BS, and HOBS 

Aguacatal STD 37 Puebla HO, BS, and HOBS 

Farm 5 FD 16 Jalisco HO 

Farm 6 FD 32 Jalisco HO 

Farm 7 FD 24 Jalisco HO 

Farm 8 FD 30 Jalisco HO 
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temperature and precipitation are 25 °C and 1,460 mm(9). The third DP PU and the STD PUs 

are located in the Hueytamalco municipality, Puebla, at an altitude of 240 m, with a tropical 

wet climate (Af(c)), mean annual temperature of 23 ºC, and mean annual precipitation 

ranging from 2,200 to 2,500 mm(9). 

 

The four FD PUs are located in the Tepatitlán municipality, Jalisco, at an altitude of 1,927 

m. This location has a humid subtropical climate ((A)C(w1) (e)g) with an annual mean 

temperature and precipitation of 18 ºC and 715 mm(9). 

 

The DP systems mainly use cross-bred Bos taurus taurus and Bos taurus indicus. The most 

common Bos taurus indicus breeds are Brahman, Gyr, and Sardo Negro; as for Bos taurus 

taurus, the most common breeds are Holstein, Brown Swiss, and Simmental(10). 

 

One of the variants of tropical dairy systems is the STD. This system is characterized by 

using pure breeds, such as Holstein and Brown Swiss. Overall, STD management is similar 

to DP systems except for calf rearing, which is artificial, and milking, which is carried out 

without calf support(10). 

 

FDs are characterized by small production units that fluctuate from 3 to 30 cows. The 

production units are conditioned to small areas and adjacent to the housing units, called 

“backyard.” FDs can be intensive or semi-intensive according to the conditions of the 

cultivation field. Holstein is the most common breed. The technological level is considered 

scarce because producers do not carry out adequate feeding, reproductive, preventive, or 

breeding practices. This system lacks production records and has rudimentary facilities; 

manual milking is often performed. Feeding is based on grazing or the supply of forages and 

wastes from the producer's crops(11).  

 

 

Methane sampling 

 

 

Methane was sampled using the methodology developed by Garnsworthy et al(12) and the 

Guardian-NG gas monitor (Edinburgh Instruments, Scotland, United Kingdom); this 

methodology measures environmental gas concentrations every second using a non-

dispersed dual-wavelength system. 

 

The devices were installed in the feeding troughs where cows were offered feed during 

milking. Adaptations were made for the different types of feeding troughs to create a closed 

atmosphere to prevent drafts from skewing CH4 concentrations. These adaptations aimed to 
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generate the least disturbance during routine milking and allow the atmospheric sampling of 

the trough while the animal was feeding. 

 

An adaptation period of one week was carried out to the presence of the new troughs. CH4 

was measured for two weeks during milking; the aim was to have a minimum of 10 effective 

days of measurement in each PU. 

 

 

Milk sampling 

 

 

Milk samples were obtained from each animal during milking. Samples were at least 50 mL 

and were directly obtained from the weighers at the start of the measurements. After 

collection, samples were preserved with bronopol and identified with the PU’s number and 

the animal’s identification number. 

 

Milk samples were analyzed in the milk quality control laboratory of the Asociación Holstein 

de México A.C. using the mid-infrared technique to measure protein and fat percentages. 

 

 

DNA sampling and extraction 

 

 

Hair follicles were collected from the hairs obtained from the tail of all the animals included 

in this study. Hair samples were labeled and sent to the GENESEEK laboratory (Lincoln, 

Nebraska). In this laboratory, DNA was extracted, and genotypes were obtained through 

high-density microarrays. The GGP BOVINE LD V4 array was used for the animals from 

FDs; with this array, it is possible to get 30,125 SNPs. As for the animals from the STD and 

DP systems, the GGDP BOVINE 150K array was used to identify 138,962 SNPs per animal; 

this is because crossed animals require a greater number of markers for the information to be 

valid. In this study, only the SNPs located in the 29 autosomal chromosomes were included. 

The quality control of the genotypes was carried out using the PLINK 1.7(13) software and 

consisted of 1) removing the individuals with less than 90 % of the genotypic information, 

2) removing the animals with a minor allele frequency of less than 5%, and 3) removing the 

animals with less than 90 % of the useful markers. At the end of the quality control analysis 

and keeping the markers shared in both platforms, the number of available markers was 

20,776 SNPs for each animal. 
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Statistical analysis 

 

 

Estimation of the genomic relationships 

 

 

Variance components were estimated using the mixed model methodology. Due to the lack 

of complete genealogical information needed to build the additive relationship matrix (A 

Matrix), molecular markers were used to construct the genomic relationship matrix between 

all animals (G). The G matrix was built based on the method proposed by VanRaden(14). This 

method creates the M matrix using the dimensions: number of individuals (n) x number of 

markers (m). The matrix elements were coded as -1 (homozygous for one allele), 0 

(heterozygous), and 1 (homozygous for the other allele). The P(nxm) matrix is subtracted from 

the M matrix; this subtraction results in the Z matrix (Z = M – P). The P(nxm) matrix contains 

columns with all the 2(pi-0.5) elements, where pi is the frequency of the second allele in the 

locus i. Finally, the G matrix was calculated as: 

𝐺 =  
𝑍𝑍´

2∑𝑝𝑖(1 − 𝑝𝑖)
 

 

 

Estimation of the variance components 

 

 

The variance components for CH4 emissions and the milk components (fat and protein 

percentages) were implemented with the ASReml-R program(15). 

 

The model was selected based on the effects of daily milk production during measurements, 

lactation days, lactation period, lactation number, production system, herd number, and breed 

on the response variables: methane production during milking, fat percentage, protein 

percentage. All the logical combinations within the fixed and random effects that converged 

with the response variables were tested. The resulting univariate model is represented as 

follows: 

 

𝑦 = 𝜇 + 𝑋𝑏 + 𝑍1𝑎 + 𝑊1𝑛 + 𝑒      

 

Where,  

𝒚 is the vector of the response variables (CH4 production during milking, fat and protein percentage);  

𝝁 is the overall mean of the response variables;  

𝑿 is the incidence matrix for the fixed effects of daily milk production during measurements and 

lactation number;  
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𝒃 is the solution vector for the fixed effects of daily milk production during measurements and 

lactation number; 𝑍 is the incidence matrix of the random effects of the animal;  

𝒂 is the solution vector of the random effects of the animal ~ 𝑁 (0, 𝐺𝜎2
𝑎);  

𝑾 is the incidence matrix for the random effect of the production system;  

𝒏 is the solution vector for the random effect of the production system;  

𝒆 is the vector of the random effects of the residuals ~ 𝑁 (0, 𝐼𝜎2
𝑒). 

 

 

Estimation of the covariance components 

 

 

The covariance components between CH4 emissions during milking and milk components 

were calculated with the ASReml-R program(15). The variances estimated with the univariate 

models were used as initial values to estimate covariances. 

 

The bivariate model is represented in matrix terms as follows: 

|
𝑦1

𝑦2
| = |

𝑋1

0

0
𝑋2

| |
𝑏1

𝑏2
| + |

𝑍1

0

0
𝑍2

| |
𝑎1

𝑎2
| + |

𝑊1

0

0
𝑊2

| |
𝑛1

𝑛2
| + |

𝑒1

𝑒2
|    

 

Where, 𝑦1 and 𝑦2  are the vectors of the response variable (CH4 production during milking, 

fat and protein percentage); 𝑋1 and 𝑋2 are incidence matrices for the fixed effects of daily 

milk production during measurements and lactation number; 𝑏1 and 𝑏2 are the solution 

vectors for the fixed effects of daily milk production during measurements and lactation 

number; 𝑍1 and 𝑍2 are the incidence matrices of the random effects of the animal; 𝑎 and 𝑎2  

are the solution vectors of the random effects of the animal ~ 𝑁 (0, 𝐺𝜎2
𝑎); 𝑊1 and 𝑊2 are 

the incidence matrices for the random effect of the production system;  𝑛1 and 𝑛2 are the 

solution vector for the random effect of the production system; 𝑒1 and 𝑒2  are the random 

effect vectors of the residuals ~ 𝑁 (0, 𝐼𝜎2
𝑒). 

 

 

Estimation of the genetic parameters 

 

 

The h2 were obtained from the variance components estimated with the univariate models. 

The genetic correlations (𝑟𝑥𝑦) were estimated from the bivariate models. The h2 was 

calculated by dividing the additive variance (𝜎2
𝑎) by the phenotypic variance (𝜎2

𝑓)(16): 

ℎ2 =  
𝜎2

𝑎

𝜎2
𝑓

 

The 𝑟𝑥𝑦 were estimated by dividing the genetic covariance (𝜎𝑥𝑦) of variables x and y between 

the square root of the product of the genetic variance of the variable x and y(16): 
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𝑟𝑥𝑦 =  
𝜎𝑥𝑦

√𝜎2
𝑥𝜎2

𝑦

 

 

 

Selection index 

 

 

The response to selection was estimated by different selection indices between methane 

production and milk production and components. A sensitivity analysis identified different 

scenarios in which methane emissions, fat percentage, and protein percentage could be 

selected. Thus, it was possible to observe the dynamics between the accuracy of the indices 

and their genetic gain (Table 2). The selection indices were carried out for five generations. 

The traits included in the indices were assigned a value based on selection importance and 

intensity; the sum of the values in absolute quantities must be equal to 100. CH4 emissions 

were assigned values ranging from 0 to -100; fat and protein percentages were assigned 

values ranging from 0 to 100. 

 

Table 2: Selection indices and selection intensity of each model trait 

Index CH4 Fat Protein Index CH4 Fat Protein 

INDEX1 -100 0 0 INDEX34 0 10 90 

INDEX2 -90 0 10 INDEX35 -40 40 20 

INDEX3 -90 10 0 INDEX36 -20 20 60 

INDEX4 -80 0 20 INDEX37 -30 30 40 

INDEX5 -80 10 10 INDEX38 -40 50 10 

INDEX6 -80 20 0 INDEX39 -10 20 70 

INDEX7 -70 0 30 INDEX40 0 20 80 

INDEX8 -70 10 20 INDEX41 -40 60 0 

INDEX9 -60 0 40 INDEX42 -30 40 30 

INDEX10 -70 20 10 INDEX43 -20 30 50 

INDEX11 -70 30 0 INDEX44 -10 30 60 

INDEX12 -60 10 30 INDEX45 -30 50 20 

INDEX13 -50 0 50 INDEX46 -20 40 40 

INDEX14 -60 20 20 INDEX47 0 30 70 

INDEX15 -50 10 40 INDEX48 -30 60 10 

INDEX16 -40 0 60 INDEX49 -10 40 50 

INDEX17 -60 30 10 INDEX50 -30 70 0 

INDEX18 -60 40 0 INDEX51 -20 50 30 

INDEX19 -50 20 30 INDEX52 -20 60 20 
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INDEX20 -30 0 70 INDEX53 -10 50 40 

INDEX21 -40 10 50 INDEX54 -20 70 10 

INDEX22 -50 30 20 INDEX55 0 50 50 

INDEX23 -20 0 80 INDEX56 0 40 60 

INDEX24 -40 20 40 INDEX57 -20 80 0 

INDEX25 -10 0 90 INDEX58 -10 60 30 

INDEX26 -30 10 60 INDEX59 0 60 40 

INDEX27 -50 40 10 INDEX60 -10 70 20 

INDEX28 0 0 100 INDEX61 -10 80 10 

INDEX29 -50 50 0 INDEX62 0 70 30 

INDEX30 -20 10 70 INDEX63 -10 90 0 

INDEX31 -40 30 30 INDEX64 0 80 20 

INDEX32 -30 20 50 INDEX65 0 90 10 

INDEX33 -10 10 80 INDEX66 0 100 0 

 

The variance and covariance components used were those obtained with the previously 

described models for milk components (fat and protein percentages) and CH4 production 

during milking.  

 

The original specification of the selection index foresees the use of a correlated variable (I) 

based on the phenotypic performance of each animal for several traits(5). Therefore, it is 

defined as: 

 

I = b p        

Where p is a vector of phenotypic values for the selection criteria and b corresponds to the 

weighting factors used in selection decision making. To maximize the correlation of I with 

the contribution of any candidate for the selection as a possible parent, the information is 

combined as: 

 

Ga = Pb        

Where G is a nxm matrix of genetic variances and covariances between all the m traits, a is 

a mx1 vector of values relative to the selection intensity for all traits. P is a nxn matrix of 

phenotypic variances and covariances between the n traits measured and available as 

selection criteria and b is a nx1 vector of weighting factors applied to the traits used in 

selection decision making. Thus, the previous equation is solved as: 

 

P-1 Ga = b        

To obtain the weighting factors contained in b, the selection candidates are classified based 

on the index (I). 
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The index precision (𝑟𝐻𝐼) can be described as the correlation between the index on which the 

selection is based and the genetic value; it is calculated as follows: 

 

𝑟𝐻𝐼 =
𝑏 𝑃𝑏

𝑎 𝑄𝑎
             

Where, b is a vector of weighting factors to be applied to the traits used to decide the 

selection; P is a matrix of phenotypic variances and covariances between the measured traits 

used as selection criteria; a is a vector of relative values for all traits; Q is a matrix of the 

genetic variances and covariances between all the traits considered as part of the system. 

 

The genetic gain (∆𝑔) for each trait was estimated; it indicates the increase in performance 

achieved through breeding programs: 

 

𝐸 (∆𝑔) =  
𝑖G´b

𝜎𝐼
       

Where: i= selection intensity; G= matrix of the genetic variance-covariance of the traits; b= 

is a vector of weighting factors to be applied to traits used in selection decision making; 𝜎𝐼 =

 is the standard deviation of the index. 

The standard deviation of the index was calculated as follows: 

 

𝜎𝐼 =  √b′Pb       

Where: b= vector of the weighting factors applied to the traits used in selection decision 

making; P= matrix of the phenotypic variances and covariances between the measured traits 

used as selection criteria. 

 

 

Results 
 

 

The CH4 emissions in the STD system were 0.08 mg of CH4/ L; FD and DP systems produced 

0.06 mg of CH4/ L (Table 3). The average of the three systems was 0.065 mg of CH4/ L. As 

for milk components, the average fat percentage in the three systems was 4.82 %; the values 

per system were 3.69 % in STD, 3.72% in FD, and 6.84 % in DP. The protein percentage in 

the STD, FD, and DP systems was 3.20, 3.29, and 3.21 %, respectively. When combining the 

three systems, the average protein percentage was 3.23 %.  
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Table 3: Descriptive statistics of methane production and milk components in three 

production systems in Mexico 

 Methane (mg/L) Fat % Protein % 

System Mean SD Mean SD Mean SD 

DP (n=98) 0.06 0.039 6.84 4.938 3.21 0.405 

FD (n=102) 0.06 0.014 3.72 0.632 3.29 0.315 

STD (n=74) 0.08 0.016 3.69 0.492 3.20 0.417 

Average 0.065 0.028 4.828 3.344 3.234 0.380 

DP= dual-purpose system, FD= family dairy, STD= specialized tropical dairy, N= number 

of observations, SD= standard deviation. 

 

The h2 estimated for CH4 emissions during milking using the univariate model was 0.19. 

Similarly, the h2 for fat percentage was 0.39 and 0.18 for protein percentage. 

 

However, the h2 estimated using bivariate models was 0.32±0.245 for CH4 emissions during 

milking and 0.46±0.278 for fat percentage. The h2 for protein percentage was similar to the 

one estimated with the univariate model. However, the h2 of CH4 is similar to the one found 

in the bivariate analysis with fat percentage (0.35). The genetic correlations between milk fat 

and protein percentage and CH4 emissions during milking were -0.090 ± 0.080 and -0.18 ± 

0.575, respectively. 

 

Table 4 and Figure 1 show the accuracy of the selection indices (𝑟𝐻𝐼) and the genetic gain 

(∆𝑔). In all the selection indices, the decrease of CH4 emissions during milking does not 

negatively affect milk components. Moreover, the 𝑟𝐻𝐼 of the most accurate indices are those 

where CH4 emissions during milking are selected. 

 

Table 4: Selection indices and genetic gain for CH4 and milk components 

Index rHI 
CH4 

(mg/L) 

Fat 

(%) 

Protein 

(%) 
Index rHI 

CH4 

(mg/L) 

Fat 

(%) 

Protein 

(%) 

INDEX1 19.58 -0.021 0.030 0.073 INDEX34 10.72 -0.013 0.015 0.117 

INDEX2 18.38 -0.021 0.029 0.078 INDEX35 10.63 -0.021 0.030 0.086 

INDEX3 17.92 -0.021 0.030 0.073 INDEX36 10.41 -0.018 0.023 0.110 

INDEX4 17.23 -0.021 0.029 0.082 INDEX37 10.32 -0.020 0.027 0.100 

INDEX5 16.72 -0.021 0.030 0.078 INDEX38 10.12 -0.021 0.031 0.078 

INDEX6 16.26 -0.021 0.030 0.072 INDEX39 9.95 -0.016 0.020 0.115 

INDEX7 16.14 -0.021 0.028 0.088 INDEX40 9.70 -0.014 0.016 0.117 

INDEX8 15.57 -0.021 0.029 0.083 INDEX41 9.70 -0.021 0.032 0.069 

INDEX9 15.13 -0.020 0.027 0.093 INDEX42 9.62 -0.020 0.029 0.094 

INDEX10 15.06 -0.021 0.030 0.078 INDEX43 9.56 -0.018 0.025 0.107 

INDEX11 14.61 -0.021 0.031 0.072 INDEX44 9.01 -0.017 0.022 0.113 
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INDEX12 14.49 -0.020 0.028 0.089 INDEX45 9.01 -0.020 0.030 0.087 

INDEX13 14.21 -0.020 0.026 0.099 INDEX46 8.77 -0.019 0.027 0.103 

INDEX14 13.92 -0.021 0.029 0.084 INDEX47 8.70 -0.014 0.018 0.117 

INDEX15 13.50 -0.020 0.027 0.095 INDEX48 8.49 -0.021 0.032 0.078 

INDEX16 13.41 -0.019 0.025 0.104 INDEX49 8.12 -0.017 0.024 0.111 

INDEX17 13.40 -0.021 0.030 0.078 INDEX50 8.09 -0.020 0.033 0.067 

INDEX18 12.96 -0.021 0.031 0.071 INDEX51 8.05 -0.020 0.029 0.097 

INDEX19 12.86 -0.020 0.028 0.090 INDEX52 7.41 -0.020 0.031 0.089 

INDEX20 12.74 -0.018 0.023 0.110 INDEX53 7.28 -0.018 0.026 0.107 

INDEX21 12.63 -0.019 0.026 0.101 INDEX54 6.90 -0.020 0.033 0.078 

INDEX22 12.27 -0.021 0.030 0.085 INDEX55 6.78 -0.016 0.022 0.114 

INDEX23 12.23 -0.017 0.020 0.114 INDEX56 6.78 -0.015 0.020 0.116 

INDEX24 11.90 -0.020 0.027 0.097 INDEX57 6.52 -0.020 0.034 0.064 

INDEX25 11.89 -0.015 0.017 0.117 INDEX58 6.52 -0.019 0.029 0.100 

INDEX26 11.89 -0.018 0.024 0.107 INDEX59 5.89 -0.017 0.025 0.110 

INDEX27 11.76 -0.021 0.031 0.078 INDEX60 5.86 -0.020 0.032 0.091 

INDEX28 11.75 -0.013 0.014 0.118 INDEX61 5.35 -0.020 0.034 0.077 

INDEX29 11.32 -0.021 0.032 0.070 INDEX62 5.08 -0.017 0.028 0.104 

INDEX30 11.30 -0.017 0.021 0.112 INDEX63 5.02 -0.019 0.036 0.057 

INDEX31 11.23 -0.020 0.029 0.092 INDEX64 4.40 -0.018 0.032 0.092 

INDEX32 11.08 -0.019 0.025 0.104 INDEX65 3.90 -0.018 0.035 0.073 

INDEX33 10.91 -0.015 0.018 0.116 INDEX66 3.67 -0.017 0.037 0.044 
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Figure 1: Precision of the selection indices and genetic gain for CH4 and milk components 

 

 
 

In the indices with greater 𝑟𝐻𝐼, indices from 1 to 10, this variates from 15.06 to 19.58 in five 

generations; this would result in CH4 reductions ranging from 0.021 to 0.020 mg/L, fat 

percentage increases ranging from 0.027 to 0.030 and from 0.072 to 0.093 for protein 

percentage. These results indicate that milk production decreases when CH4 emissions 

decrease. For the remaining indices, the changes in CH4 emissions during milking, fat 

percentage, and protein percentage were not significant; however, the 𝑟𝐻𝐼 is lower. 

 

 

Discussion 
 

 

The CH4 emissions during milking estimated in this study are lower than those reported by 

Bell et al(17).; this is possibly due to diet heterogeneity. In the farms analyzed in this study, 

animals are fed by grazing; in the specialized systems, animals are fed a concentrate-based 

diet. The h2 of CH4 production during milking estimated in this study are similar to those 

reported by other authors with metabolic chambers(18,19) or even with prediction equations(8). 

These results coincide with those reported by other authors using similar CH4 measuring 

methodologies(20); this suggests that CH4 during milking is a trait that could be potentially 
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used in breeding programs because it can be easily incorporated into production control 

programs and requires unsophisticated equipment compared to respiratory chambers; 

additionally, this equipment can be mobilized to places of difficult access. The fat percentage 

h2 estimated in this study is higher than those observed in other studies(21-22). The protein 

percentage h2 is lower than the 0.23 reported by Othmane et al(23); this may be due to the 

inherent heterogeneity in dairy production units depending on the herd's diet and race. 

 

The genetic correlations between CH4 emissions and milk components suggest genetic 

antagonism. However, the estimates in this study were not different from zero. The CH4 and 

grams of milk fat correlation observed by Pszczola et al(4) is higher (0.21) than that reported 

in this study; the correlation between CH4 and grams of milk protein in this study was similar 

to the one reported by Lassen et al(24) (0.39). In both cases, the opposite sign. It is important 

to mention that this difference is due to the units of measurement since milk production and 

the percentages of milk components have a negative correlation. In contrast, milk production 

and the content of its components have a positive correlation(25). Currently, the reduction of 

CH4 emissions through genetic selection has been proposed; this could reduce dairy cattle 

CH4 emissions in 10 yr between 11 and 26 %(8); 5 % in beef cattle(26). 

 

The selection indices performed by Kandel et al(27) include fat and protein production, which 

were positively correlated with CH4 production. Considering the units of measurement, their 

result is similar to the one reported in this study since the correlation between milk production 

and the percentage of milk components is negative. In contrast, the correlation between milk 

production and the content of milk components is positive(27). 

 

 

Conclusions and implications 
 

 

The genetic correlations between CH4 emissions and milk components (fat and protein 

percentage) suggest that a breeding program aimed to simultaneously decrease CH4 

emissions and increase the percentages of milk components is feasible. In other words, these 

results show that it is possible to genetically select animals to reduce CH4 emissions without 

negatively affecting milk composition; this is confirmed by the genetic gains per generation 

predicted by the selection indices. The above, with CH4 reductions during milking in five 

generations ranging from 0.013 to 0.021 mg/L, without decreasing fat and protein 

percentages. 
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