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Abstract: 

In this study, pork Longissimus thoracis muscle was used, which was frozen in a chamber 

and thawed under controlled conditions. The color profile and the surface myoglobin were 

evaluated. A thermal analysis was performed by modulated differential scanning calorimetry 

(MDSC), and Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-

ATR). It was found that there were important effects in myoglobin due to the freeze-thawing 

process in parameters such as pH, luminosity (L*), and chroma values, as well as in activation 

energies (Ea) and denaturation enthalpy (ΔH) between myoglobin forms. In raw meat, it was 

found that there was a greater proportion of deoxymyoglobin, and in frozen-thawed samples, 

metmyoglobin was the most abundant form, indicating that are significant effects which are 

correlated with the changes in tri-stimulus coordinates and with the thermal and chemical 

parameters in pork meat. 

Key words: Myoglobin, Freezing-Thawing, Pork Meat, MDSC, Color profile, FTIR 

spectroscopy. 
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Introduction 
 

 

Meat is a product that is highly susceptible to degradation due to its chemical composition, 

caused by factors such as storage temperature (chilling and freezing), modified atmospheres, 

microorganisms, among others. Pork is usually consumed as a main dish or in various by-

products such as sausages, ripened and cooked. However, there is a need to extend its shelf 

life by applying conservation techniques that do not alter its properties, mainly the sensory 

one which is the most important for consumers(1-3). With the increase in meat consumption 

in Mexico and its commercialization in places such as Asia, Europe, and South America, 

freezing storage in a chamber unit has been the most used method, because, among other 

factors, it is economical, control microbiological growth, and avoids enzymatic reactions and 

chemical deterioration. The method and the freezing rate are determinant for ice crystal 

formation (size and geometry); however, poor management of the process can cause damage 

to the meat fibers or develop important biochemical reactions such as proteolysis and lipid 

oxidation. The latter can irreversibly affects the physicochemical and functional properties 

of certain proteins such as: myofibrillar, sarcoplasmic, and connective(4-6). 

 

Myoglobin is the main protein responsible for the color in meat; it belongs to the group of 

sarcoplasmic proteins, which are soluble in water. Myoglobin consists of a single polypeptide 

chain (8 alpha helix) called globin, and a prosthetic heme group, with an iron atom at its 

center. Its molecular weight ranges between 14 to 18 kDa. Meat color is mainly influenced 

by the pigment content, and by the chemical form and structure of myoglobin. One of the 

factors which determine meat color is the iron oxidation status and the compounds (oxygen, 

water, or nitric oxide) bound to the molecule. The thermostability of this protein also depends 

on the chemical state, being the deoxymyoglobin (DMb) the more stable form to heat 

denaturation, followed by oxymyoglobin (OMb), and metmyoglobin (MMb). Therefore, the 

thermodynamics of the transformation reactions between DMb, OMb, and MMb are quite 

similar, with the exception of OMb to MMb transformation(7). 

 

This work aims to evaluate the changes that occur in the myoglobin oxidation state in pork 

muscle during freezing storage, and its effects on the various oxidative aspects that could 

affect the sensorial and quality characteristics of the system, such as the color profile and the 

thermal stability of the different chemical forms of myoglobin. 
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Material and methods 
 

 

Sample preparation 

 

 

Longissimus thoracis muscle was obtained from Pietrain male castrated pigs (6 mo of age), 

weighing approximately 110 ± 2 kg. The pigs were housed in a pen (4.9 × 2.0 m) with a 

concrete floor and a 0.5-m-wide slatted dunging area. Fed and water were offered ad libitum. 

The feeds used were manufactured by Nutricion Tecnica Animal S.A. de C.V. (Cuautitlan 

Izcalli, State of Mexico, Mexico). No antibiotics and other growth-promoting agents were 

added to the diets. Five pieces of muscle were obtained from the 9th to 13th rib section from 

which cuttings of 1 cm3 were refrigerated for 24 h after rigor mortis. Subsequently, samples 

were vacuum sealed using flexible low-density polyethylene films and frozen in a chamber 

(REVCO Ultima II, New Castle DE, USA) at -18 ± 2 °C for 24 h and then thawed at 4 ± 2 

°C for 5 h in a typical chamber (Nieto, Mexico) with 70 % relative humidity. All experiments 

were carried out at UNAM-FES Cuautitlan, Multidisciplinary Research Unit L13 (Thermal 

and Structural Analysis of Materials and Foods). 

 

Myoglobin was extracted following the methodology proposed by Warris(8). Briefly, 5 g of 

meat was homogenized for 1 min in 40 mM potassium phosphate solution (pH=6.8) at 2 °C; 

afterwards, homogenizates were centrifuged at 50,000g for 30 min at 5 °C in a K3 centrifuge 

(Centurion Scientific, UK) and the supernatant filtered through Whatman #1 filter paper. 

 

 

Chemical analysis 

 

 

The chemical analysis was conducted according to the methods proposed by the Association 

of Official Analytical Chemists(9): moisture content (986.21), total ash (990.08), lipid 

(960.39), and protein (977.14). The pH was determined using the methodology described by 

Koniecko(10), using a pH meter (HI99163, Hanna Instruments, RI, USA). In all cases, five 

repetitions were performed. 
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Color profile 

 

 

The methodology described by the American Meat Science Association(4) was employed 

using a CM600d reflectance spectrophotometer (Konica Minolta, Tokyo, Japan). The 

measurements conditions were: type A coupled illuminant (incandescent with tungsten 

filament at 2856 K), aperture size of 8 mm and an observation angle of 10°. The tri-stimulus 

values (L*, a*, and b*) were obtained according to the CieLab system using the software 

Spectra Magic NX™. The reflectance and absorbance phenomena were evaluated in the 

wavelength range from 400 to 700 nm. From the data, hue angle (°hue), chroma (C*), and 

the total color difference (ΔE*) were calculated(11-14). 

 

 

Surface myoglobin fraction 

 

 

The quantification of the myoglobin fraction was made on the surface of the meat 

(perpendicular to the fibers), according to the recommendations of Tang et al(15). The 

following equations were used: 

𝐷𝑒𝑜𝑥𝑦𝑚𝑦𝑜𝑔𝑙𝑜𝑏𝑖𝑛 = −0.543𝑅1 + 1.594𝑅2 + 0.552𝑅3 − 1.329 (eq. 1) 

𝑂𝑥𝑦𝑚𝑦𝑜𝑔𝑙𝑜𝑏𝑖𝑛 = 0.722𝑅1 − 1.432𝑅2 − 1.659𝑅3 + 2.599 (eq. 2) 

𝑀𝑒𝑡𝑚𝑦𝑜𝑔𝑙𝑜𝑏𝑖𝑛 = −0.159𝑅1 − 0.085𝑅2 + 1.262𝑅3 − 0.520 (eq. 3) 

𝑅1 =
𝐴582
𝐴525

 (eq. 4) 

𝑅2 =
𝐴557
𝐴525

 (eq. 5) 

𝑅3 =
𝐴503
𝐴525

 (eq. 6) 

 

 

Thermal analysis 

 

 

Samples were analyzed using a differential scanning calorimeter with temperature 

modulation (DSC 2920, TA Instruments, New Castle DE, USA). Cooling was carried out 

using a refrigerated cooling system. The temperature and heat capacity calibrations were 

performed using TA Instruments software with indium (melting point value of 156.6 °C) and 

sapphire (aluminum oxide), respectively. The TA Instruments universal analysis software 

(2000V 4.5A) was used to register and analyze all thermograms. Samples (12 ± 0.53 mg) 
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were packed down in hermetic aluminum pans and were analyzed in triplicate by heating in 

the modulated DSC furnace at a rate of 5 °C/min with temperature modulation of 0.8 °C 

every 60 sec Nitrogen was used as purge gas at a constant flow rate of 60 mL/min. Thermal 

decomposition data were collected over the temperature range of 20 to 90 °C(6,16-18). 

 

 

Activation energies (Ea) 

 

 

The Ea required for protein denaturation was obtained using the methodology described by 

Coria et al(11), Calzetta and Suarez(19) and Cornillion(20). The reaction order (n), the Arrhenius 

constant (Z), the degree of conversion (α), and the conversion rate (dα/dt) were also 

determined using the following expressions: 

ln (
dα

dt
) = ln Z − n ln(1 − α) −

𝐸𝑎

RT
 (eq. 7) 

α =
∆Hg

∆Ht
 (eq. 8) 

 

Where ΔHg is the enthalpy for each temperature in the transition zone (J g-1), and ΔHt is the 

total enthalpy (J g-1). To obtain the value of the unknown factors (Z, n and Ea), a multiple 

linear regression (MLR) analysis of eq .7 was performed. 

 

 

FTIR-ATR Spectroscopy 

 

 

The functional groups in the meat were further characterized using a Frontier SP8000 

spectrophotometer (Perkin Elmer, Waltham, MA, USA) following the recommendations of 

Coria et al(21). Briefly, samples were placed on top of the attenuated total reflection (ATR) 

crystal, and spectra were collected in the range of 400–4000 cm-1 at a resolution of 4 cm-1 by 

co-adding 32 scans. A background spectrum was obtained against air every day during the 

experiment. 

 

 

Statistical analysis 

 

 

The experiment was conducted as a completely randomized design (the experimental unit 

consisted of 25 cubes of 1 cm3 randomly taken from five Longissimus thoracis muscles). 

Experimental data were subjected to 1 and 2-way analysis of variance (ANOVA), and the 
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means were separated using the Tukey test. A probability P<0.05 was used to distinguish 

significant differences employing the Minitab 16.0.1 software (Penn State University, 

Pennsylvania, USA). In multiple linear regression analysis, the Origin Pro 8 software 

(OriginLab Corp., Northampton, MA, USA) was utilized. 

 

 

Results and discussion 
 

 

Chemical analysis 

 

 

The chemical composition of raw and thawed meat is shown in Table 1. Results are in close 

agreement to those reported by Meléndez et al(6) and Karamucki et al(22). There were 

significant differences in moisture content (P<0.05) between treatments. Due to the freezing 

process, large crystals were formed causing rupture in the meat fibers; consequently, in these 

samples some water was lost by exudation. Moreover, the loss of water in thawed samples 

had also an important effect in the decrease of ashes, but not in the protein and lipid contents, 

as previously reported by Karamucki et al(22). 

 

Table 1: Chemical composition for the raw and thawed meat 

Component Raw Thawed 

Moisture 75.30±1.19a 74.86±0.46b 

Proteins 21.83±2.54a 22.64±1.12a 

Lipids 1.87±0.09a 1.96±0.20a 

Ash 1.0±0.03a 0.54±0.11b 

Mean ± standard deviation 
ab Means with a different letter in the same row are statistically different (P<0.05). 

 

 

pH 

 

 

There were significant differences (P<0.05) in the pH value in the frozen-thawed meat in 

comparison to raw meat, presenting values of 5.69 ± 0.08 and 5.63 ± 0.17, respectively. 

Therefore, it was confirmed that this conservation process produces important changes; 

among them, the modifications in the redox dynamics in the myoglobin due to a decrease in 

the formation of lactic acid from muscle glycogen by anaerobic glycogenolysis(23). The latter, 

generates several inter-conversions that structurally alter the meat and, therefore, significant 

changes occurred in color appreciation, which lead to quality defects that results in the 
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formation of PSE (pale, soft, and exudative) or DFD (dark, firm, and dry) meat(24). According 

to Krzywicki(25), reductions in pH values are usually accompanied by a diminution in light 

penetration depth and an increment in reflectance, which leads to an increase in luminosity 

(L*) and a decrement in the amount of the reduced form of myoglobin (DMb). At the same 

time, lower pH values are also associated with a greater susceptibility of the muscular 

pigments to oxygenation and oxidation and, consequently, the formation of greater amounts 

of OMb and MMb. 

 

 

Color profile 

 

 

The mean values of the color profile parameters are shown in Table 2. For raw meat, the 

values of L*, a* and b* are similar to those reported in other studies(26-30). In general, the 

freeze-thaw process generates significant changes in the luminosity (L*) coordinate. Intra- 

and extracellular ice crystals have a molecular angle of 109.45° between hydrogen 

atoms(31,32); this angle was different from that of liquid water (104.50°), generating ruptures 

in the meat fibers and some bonds, allowing exudates to exit. Moreover, the L* value depends 

on the total amount of light absorbed and reflected by the meat surface. Therefore, the impact 

of absorption and reflection on the appreciation of color luminosity varies depending on the 

pigment content in the tissue and its structure. It is well known that the relative content of the 

chemical form of the myoglobin on the meat surface also influences the L* coordinate(22). 

The a* coordinate is usually correlated to a reddish coloration. In this research, the a* average 

value was slightly higher in the case of the thawed meat, which is attributed to the fact that 

the surface myoglobin underwent modifications when redox reactions were carried out by 

time effects in the freeze-thaw processes. The same phenomenon was observed in the b* 

coordinate. According to Lesiów and Xiong(27) and Skrlep and Candek-Potokar(30), the hue 

angle for pink and red meat should be in the range between 0 and 90°. In this research, the 

freeze-thaw process significantly affects the meat tone. Chroma values (C*) are consistent 

with those reported by other researchers(23, 30). Such differences in Chroma were statistically 

significant, indicating that changes in color saturation were not perceptible. The total color 

difference (ΔE*) between raw and frozen-thawed meat have an average value of 3.63 ± 0.68, 

indicating that the crystallization-melting process generates changes in the set of the three-

color profile coordinates. However, according to the AMSA(4) and Chmiel et al(33), up to 5 

units in the total color difference were not perceptible to the human eye. 
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Table 2: Color profile parameters in the CieLab system of raw and thawed meat 

Sample L* a* b* Hue angle C* 

Raw 51.30±0.48a 4.98±1.14a 5.23±1.03a 46.38±3.51a 7.22±1.48a 

Thawed 50.91±1.75b 5.39±0.90b 7.91±0.94b 55.76±5.20b 9.57±0.98b 

Mean ± standard deviation. 
ab Means with a different letter in the same column are different (P<0.05). 

 

Figure 1-a shows the reflectance spectra of the raw and thawed meat, the characteristic band 

between 500 and 600 nm corresponds to myoglobin in its non-oxidized state(4). It is also 

important to note that the differences among samples were significant (P<0.05). The thawed 

samples presented a certain quantity of exuded liquids, causing slightly lower reflectance 

values. Light plays an important role in color appreciation, since the phenomenon of paleness 

in PSE meat can be explained by the contraction of myofibrils due to low pH values, which 

increases the difference of refractive index and the reflectance at the meat surface(34), 

opposite to the frozen-thawed meat. There are several theories that state that paleness is 

mainly originated from cold denaturation and precipitation of both myofibrillar and 

sarcoplasmic proteins(6). In addition, myoglobin in PSE pork meat is very susceptible to cold 

denaturation, causing a small change in the helical structure, which contributes to a 

modification in its optical properties. 

 

Figure 1: Spectral curves of raw and thawed meat (a) reflectance, (b) absorbance 

 
 

 

Surface myoglobin fraction 

 

 

The absorbance spectra are also shown in Figure 1b. In general, samples with structural 

damage caused by the freeze-thaw processes presented strong absorption bands. This 

phenomenon was possible due to fiber ruptures by water crystallization. The above 
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mentioned effect generates surface differences, reflected in changes in color profile 

parameters and visual appreciation(4). Commonly, the absorbance for myoglobin in their 

different forms is found at 503, 525, 557 and 582 nm.  

 

According to the values presented in Table 3, in the raw meat, the greater amount of 

myoglobin was found under the form of DMb, without perceptible alterations in its structure. 

The cooling process of the meat after slaughter had significant effects that modify the 

sarcoplasmic protein structure. In frozen-thawed samples, myoglobin was reduced into the 

MMb form in a higher extent. Heat treatment and the contact with the atmosphere increased 

the pH value causing differences between samples(34). According to Cho and Choy(35), the 

conformational stability of the myoglobin molecule is strongly affected by the attachment of 

the heme group to the polypeptide chain. Authors suggested that the structure of the iron atom 

is the main factor affecting the stability of this particular protein. 

 

Table 3: Fraction of myoglobin molecules in pork meat 

 Raw Thawed 

Deoxymyoglobin 0.3884±0.0023a 0.3429±0.0006b 

Oxymyoglobin 0.2282±0.0021a 0.2769±0.0018b 

Metmyoglobin 0.3843±0.0019a 0.3760±0.0012b 

Mean ± standard deviation 
ab Means with a different letter in the same row are different (P<0.05). 

 

In the pH range of meat after slaughter, changes in the myofibrillar refractive index occurred; 

consequently, there were increments and decrements in reflectance. As the pH decreases, the 

absorbance changed inversely proportional to the reflectance. The strong intrinsic 

birefringence of myofibrils does not necessarily contribute to the reflectance and absorbance, 

but this phenomenon depends directly on the amount of water on the surface and the chemical 

status of the myoglobin molecule(34,35). 

 

 

Thermal analysis by MDSC 

 

 

It has been reported that myoglobin has a denaturation temperature between 60 and 70 °C(35-

38). Figure 2 shows the thermogram of the heat flow and the specific heat (Cp) for the 

myoglobin extract. The transition observed was at an initial temperature (To) of 63.51 °C, the 

denaturation temperature (Tp) was 68.58 °C with an enthalpy (ΔH) value of 1.334 J g-1. There 

were notorious changes in Cp values, indicating that the process significantly modified the 

protein structure. 
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Figure 2: Heat flow and specific heat (Cp) of the myoglobin extract 

 
 

In the case of raw and frozen-thawed meat, the heat flow thermogram (Figure 3-a) shows the 

principal transitions of proteins. Significant differences between heat-flow values were 

observed. These endotherms are without exception associated with the phenomena of protein 

(myosin, actin, and myoglobin) denaturation(6,17,39,40). 

 

Figure 3: (a) Heat flow, (b) Derived heat flow as a function of the temperature of raw and 

thawed meat 

 
 

In the heat flow derivative graphic (Figure 3-b), no significant changes occurred, thus, merely 

denaturation effects of myosin, actin, and sarcoplasmic proteins were observed. The values 

of To, Tp, and ΔH of each transition are summarized in Table 4. In general, the To value of 

he thawed meat was lower than the raw one. The ΔH value for protein denaturation was 

significantly different (P0.05) between the raw and frozen-thawed meat samples. In the case 

of myoglobin, it was apparently unaffected in its native structure by the freeze-thaw process, 
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but the small differences in both transition temperatures and denaturation enthalpies could 

be possibly due to the chemical transformation occurring in DMb in raw to MMb in the 

frozen-thawed meat. 

 

Table 4: Temperatures (initial and maximum) and enthalpies of raw and thawed meat 

  Raw Thawed 

Myosin 

To (°C) 50.09±2.53a 48.12±1.88b 

Tp (°C) 55.07±1.98a 53.38±2.01b 

ΔH (J g-1) 0.16±0.05a 0.26±0.03b 

Myoglobin 

To (°C) 59.75±1.34a 59.36±1.55b 

Tp (°C) 65.34±3.43a 64.49±2.26b 

ΔH (J g-1) 0.25±0.04a 0.24±0.06b 

Actin 

To (°C) 73.32±1.12a 72.01±1.01ab 

Tp (°C) 77.88±1.28a 76.59±1.46ab 

ΔH (J g-1) 0.22±0.07a 0.36±0.09b 

Mean ± standard deviation. 
ab Means with a different letter in the same row are different (P<0.05). 

 

In the case of the frozen-thawed meat, the MMb was found in its highest proportion (Table 

3). Therefore, there was a reversible dissociation in both the heme and apoprotein groups, 

which is more feasible in this chemical form of myoglobin. Thus, the Tp of the myoglobin in 

thawed meat shifts to a lower temperature and the ΔH decreases, although the myoglobin 

was predominantly in the non-oxidized state (DMb). These results suggest that water 

molecules —before and after freezing— contribute to the conformational stability of the 

myoglobin molecule(1). In this context, Chaijan et al(1), Ledward(37) and Atanasov and 

Mitova(41) reported that the Tp value of the myoglobin is shifted to a lower temperature when 

MMb formation increases during meat refrigeration. Authors conclude that DMb was the 

most heat stable form, followed by OMb and MMb, respectively. Results are in accordance 

with those reported in this research. In the MDSC studies, structural changes in proteins can 

be obtained from the heat flow by means of the Cp value, which is calculated from the ratio 

of the modulated amplitude of the heat flow and the modulated amplitude of the discrete 

Fourier transform(42). Thermograms for raw and thawed meat are shown in Figure 4. It can 

be noticed that similar changes in the protein structure occurred; however, these variations 

were only in magnitude. 
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Figure 4: Specific heat (Cp) of raw and thawed meat 

 

 
 

 

Activation energies (Ea) 

 

 

The activation energies required for protein denaturation were obtained by MLR analysis. 

The values for the myoglobin extract, raw meat, and thawed samples were 393.24 ± 2.14, 

305.71 ± 3.74, and 327.89 ± 3.05 kJ mol-1, respectively. In general, the Ea showed significant 

variations attributable to several factors, including the concentration of the denatured and 

non-denatured proteins, as well as the structural modification of the proteins when subjected 

to the freezing process. In these conditions, conformational changes occurred, leading to a 

variation in the activation energy, which also influences the amount of soluble proteins, such 

as myoglobin. Moreover, variations in the Ea values could be also attributable to oxygenation 

reactions of myoglobin by air, as well as to the structural changes occurred from DMb to 

MMb. The structure of a protein is modified by the effects of redox reactions; generally, the 

MMb requires more energy and less temperature to initiate the denaturation process (Figures 

3a and 4). Although the MMb is less thermostable; thus, more energy is required to cause 

conformational modifications. 
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FTIR-ATR Spectroscopy 

 

 

Figure 5 shows the FTIR-ATR spectra, which were collected in the range of 4000-400 cm-1. 

The characteristic band at around 3280 cm-1 is associated with the stretching vibrations of 

water molecules (OH-), and the NH vibration in secondary amides. Information about the 

biochemical changes occurring during the freeze-thaw process is provided in the range of 

1750-1000 cm-1(43). The band at 1640 cm-1 indicates the presence of primary amides in the 

molecular structure of the α-helix in DMb. The band at 1,550 cm-1 was assigned to vibrations 

in secondary amides (stretching between CN) of the myoglobin molecule. This single band 

seems stronger in the case of thawed meat than the one observed in the raw meat, indicating 

a higher quantity of amide groups. Moreover, there was a stretching vibration mode of C-N 

amides at 1,398 cm-1. At 1,311 and 1,246 cm-1 there were C-N stretching in amines, mainly 

from myoglobin and myofibrillar proteins, and at 1,165 and 1,128 cm-1 there were vibrations 

of amines, amino acids, and the C-N stretching. These bands were more intense after the 

freeze-thawing processes because the existence of water molecules. Finally, there were 

important changes between the 1292-1371 cm-1 region, belonging to amines and tertiary 

amides of soluble proteins(44,45). 

 

Figure 5: FTIR-ATR spectra of (a) raw meat, (b) thawed meat 
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Conclusions and implications 
 

 

Freeze-thaw processes had significant effects on myoglobin form, producing important 

changes in thermodynamics, activation energies, and in the functional groups, all of them 

associated with changes in meat color. 
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