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Abstract: 

Ascorbic acid (vitamin C: VC) is an antioxidant that participates in the regulatory processes 

involved in the development of ovarian structures and fertility. However, supplementation of VC 

to dairy cattle to improve fertility has received little attention. However, reduced fertility in dairy 

cattle associated with high genetic merit for milk production and heat stress, which also diminish 

blood VC concentrations, suggest a potentially beneficial role for VC supplementation. The 

objectives of this review are to contribute to the current knowledge regarding the relationship 

between VC and fertility and to share many experiences that support the relevance of VC 

supplementation to improve dairy cattle reproductive performance. 
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Introduction 

 

 

The economic gains of a dairy farm increase as cattle reproductive efficiency improves. However, 

the historical decline in fertility of Holstein dairy cows hampers profitability, but at the same time 

offers a challenge to develop strategies to enhance reproductive performance. The cause of low 

fertility in modern Holstein dairy cattle is multifactorial. The main associated are the improvement 

in genetic merit to milk production, the inability to meet nutritional requirements, the adverse 

environmental conditions and the susceptibility to diseases that compromise oocyte and embryo 

viability(1). 

The exact cause of low fertility is unknown, but oxidative stress could be implicated. Oxidative 

stress results when free radicals exceed the organism’s antioxidant capacity(2). Free radicals are 

molecules with an unpaired electron, highly reactive and normally produced in living aerobic 

organisms(3). At a controlled production rate, they serve as molecular signals, but over production 

may result in a pathological process(4). Sources of free radicals that may surpass the cow’s 

antioxidant capacity include milk production yield and heat stress. High milk producers have higher 

blood concentrations of oxidative stress markers than those that produce less milk(5), and are also 

more susceptible to heat stress(6). This is relevant because heat stress produces oxidative stress in 

dairy cattle(7). Oxidative stress creates unfavorable intraoviductal conditions(8) that result in embryo 

death(9).   

Oxidative stress is counteracted by antioxidants, which suppress the deleterious effect of free 

radicals by giving them one electron. One antioxidant that is relevant to mammalian reproduction 

is water soluble ascorbic acid (vitamin C, here after referred to as VC)(10). The chemistry and 

biological functions of VC in cattle have been reviewed by others(11), and will therefore be not 

further addressed here. However, the impact of VC supplementation on dairy cattle fertility has 

been poorly studied, probably because bovines can synthetize their own VC in the liver from 

glucose(11), and thus have no need for external supplementation(12). Nevertheless, the same factors 

that are blamed for disrupting fertility (high milk yield and heat stress) decreased blood VC 

concentration in dairy cattle(13,14). It might be suspected that if VC is necessary for reproduction, a 
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diminished supply could affect fertility. Previous research has shown that supplementation of VC 

is advantageous to improving reproductive performance of repeat breeder cows(15) and dairy cattle 

under heat stress conditions(16). It is important to consider that VC supplementation and impacts on 

dairy cattle fertility deserve more attention. 

The objective of this review is to contribute to the current knowledge regarding the relationship 

between VC and fertility, and to share the experiences on the relevance of VC supplementation to 

improve dairy cattle reproductive performance. 

 

 

Ovarian follicle and corpus luteum development 

 

 

Vitamin C deficiency increases the number of atretic follicles(17). However, supplementation 

attenuates follicular cell apoptosis(18), promotes primordial follicle activation(19), increases the 

population of growing follicles(20) and reduces those in atretic state(21). These findings suggest that 

VC supports the development of healthy ovarian follicles.  

The ovarian follicle is under constant structural remodeling. Its diameter increases up to 475 times 

from the primordial to the ovulatory size(22,23). This increase in size implies a constant remodeling 

of the follicular basal lamina(24) and changing intrafollicular concentrations of VC, which are higher 

in smaller follicles(25). The follicular basal lamina gives the follicle stability and serves as a 

molecule filter(24), but it needs increasing amounts of collagen as it increases in size(26). Since VC 

is a cofactor in collagen synthesis(27), it is logical to assume that VC would be required in higher 

quantities in developing follicles. In fact, supplementation of VC improves follicle survival and 

increases the odds of a follicle reaching preovulatory size(28). This could be explained by VC 

preventing follicular cell death and maintaining base membrane integrity as the follicle grows(18,29). 

Under an environment with a regressing corpus luteum, the dominant follicle will reach the 

preovulatory state. At this stage, VC is needed for normal follicular steroidogenesis(30), which is 

accomplished by promoting the expression of key enzymes involved in steroidogenesis such as 

aromatase and P450 cholesterol side-chain cleavage(31). However, as the follicle grows there is a 

reduction in the concentration of VC. Preovulatory follicle has lower intrafollicular concentrations 

of VC than large follicles from other stages of the estrus cycle(32). This reduction may result from 

a higher intrafollicular concentration of IGF-I, which induces the uptake of VC by granulosa 

cells(33). The LH surge also causes a reduction in VC concentrations(34), probably by increasing 

intrafollicular reactive oxygen species (ROS) concentrations(35).  
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The reduced intrafollicular concentrations of VC at the preovulatory stage may be part of the 

mechanism controlling ovulation. The collagen in the follicular basal lamina is reduced as the 

follicle grows, which makes it more expandable and easier to remodel(36). The reduced 

intrafollicular concentrations of VC, together with degradation of collagen in preovulatory 

follicles, results in the weakening and rupture of the basal lamina, which are crucial events that can 

lead to preovulatory follicle rupture(37,38).  

The number of pregnant women with luteal phase defects increases after supplementing VC, which 

likely worked by increasing corpus luteum progesterone(39). Corpus luteum diameter(32) and 

concentration of progesterone(40) has been related to VC concentration. In addition, the content of 

VC is higher during the early stages of corpus luteum development(41), reaching the highest 

concentration, at least in bovines, on d 12 of the estrous cycle(42). Furthermore, one key element in 

the relationship between VC and the corpus luteum is that this vitamin is required, as mentioned 

previously, for the synthesis of collagen, which is essential for corpus luteum development(43). 

 

 

Vitamin C and fertility 

 

 

Vitamin C improved fertility(44). The enhancement in oocyte and embryo development could 

explain these results(45,46). Unfortunately, the limited information available on this topic has been 

obtained mostly under in vitro conditions. In contrary, high doses of VC might harm both the 

oocyte (750 µM mL-1) and embryo development (˃200 µM in culture medium)(47,48), possibly 

resulting from a pro-oxidant effect of VC. The VC at low concentrations can act as an antioxidant 

while the opposite occurs at high concentrations, which may depend on the concentration of metal 

ions (iron)(49). A pro-oxidant effect of VC could be expected as the concentration of metal ions 

increases(50). The latter may be true under in vitro conditions, but it is unlikely to occur in living 

organisms(51).   

 

 

Relationship between vitamin C and vitamin E 

 

 

Vitamin C may control follicular development by interacting with other elements known to affect 

fertility. It is well accepted that after vitamin E fulfills its antioxidant activity, it can be reactivated 

by VC(52), which increases its availability(53). Vitamin E deficiency disrupt follicle development, 

produces estrous cycle abnormalities and pregnancies loss(54). It is not known exactly the blood 

concentration at which vitamin E can be considered as adequate or deficient in cattle. Vitamin E 

blood concentrations ˃1 µg mL-1 can considered as adequate, but there is not agreement on this 

topic(55). In addition, it is unaware of any vitamin E recommendation for optimal reproduction 
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performance in cattle. However, previous work (see next section of this manuscript and reference 

16), have shown that supplementation of 3,000 IU of vitamin E during a synchronized estrus is 

advantageous to improve fertility in dairy cattle.  

The relationship between vitamins C and E in reproductive issues has received little attention. An 

antioxidant system, that includes vitamins C and E, is activated during ovarian steroidogenesis(42). 

The supplementation with vitamin C (125 mg kg-1 d-1) and E (75 mg kg-1 d-1) to rats increases blood 

concentrations of testosterone, FSH and LH(56). These higher concentrations of gonadotropins are 

in agreement with the fact that VC stimulates its secretion from pituitary(57). Studies in vitro have 

shown a positive effect of vitamin C and E on oocyte quality and embryo development when 

supplemented separately, but not together(53,58,59). Addition of vitamin C and E to the maturation 

medium impairs blastocyst occurrence rate by preventing the formation of the amount of ROS 

necessary for oocyte developmental competence(53). This is acceptable because a tonic supply of 

ROS has proved to interrupt oocyte meiotic arrest(60). However, it is unlikely that the situation 

described by Dalvit et al(53) also occur in vivo because supplementation of both vitamins has 

resulted in more pregnancies in dairy cattle (see next section of this manuscript and reference 16). 

In addition, an improvement in embryo quality after injecting superovulated cattle donors before 

estrus with two antioxidants, β-carotene and vitamin E, has been reported(61). 

 In vitro studies resemble conditions found under physiological conditions. However, contrary to 

in vivo conditions, in vitro systems are static, where metabolic activity, nutrient adsorption and 

storage, as well as waste disposal are limited by time and medium culture conditions. In addition, 

adaptation to changing conditions is faster in in vivo systems. Therefore, when supplementing 

vitamin C concomitant with vitamin E, the living organism choose between to storage, to excrete 

or to distribute them to where they are needed. This avoid possible harmful effects on cell biological 

process such as those affecting oocyte quality and embryo development.               

 

  

Experiences supplementing vitamin C to dairy cattle 

 

 

The evidence presented here supports a prominent role of VC on fertility. The first approach to 

evaluating the effect of VC on dairy cattle fertility was carried out on cows under heat stress 

conditions(16). The results of this study revealed that injecting both vitamin C and E results in more 

pregnant cows than administering one or the other separately. In addition, no effect of vitamins 

supplementation was found on preovulatory follicle and corpus luteum size. These findings led  to 

assume that the increased number of pregnant cows, obtained after supplementing both vitamins, 

was the result of cows carrying a healthier follicle, which eventually becomes a corpus luteum that 

produces more progesterone than that carried by non-supplemented cows. To prove this assumption 

a second trial was carried out (T2).  
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The general procedure, as well as justification of the doses and time of vitamins injections used in 

T2 is explained in detail elsewhere(16). Briefly, the follicular wave of the cows was synchronized 

with a device containing 1.0 g of progesterone (Sincrogest®, Ourofino Agronegocio), inserted 

intravaginally for 8 d, and an intramuscular (i.m.) injection of 250 µg of GnRH analogue (GnRH, 

Sanfer). Estrus behavior was induced by an i.m. injection of 500 µg of cloprostenol (Celosil, MSD, 

Animal Health) at intravaginal device removal. Once the intravaginal device was withdrawn, the 

animals were constantly monitored by direct observation for signs of standing estrus. The cows 

were artificially inseminated 12 h after standing estrus with a single dose (approximately 20 x 106 

spermatozoa) of semen from a single bull of proven fertility. Cows that received vitamins (n=32. 

Control group, n=28) were injected with a single i.m. injection of 3,000 IU of vitamin E ((±) α-

tocopherol, Sigma-Aldrich)) on d-5 (day 0 is the day of intravaginal device removal) and 

subcutaneous (s.c.) injections with a total dose of 3,000 mg of VC (ascorbic acid, Q.P., Reasol) on 

d-5, immediately after estrus detection and 2 d after artificial insemination. 

As depicted in Table 1, vitamin supplementation did not affect preovulatory follicle or corpus 

luteum size. In addition, no effect was noted on blood estradiol and progesterone production. 

However, in agreement with previous findings(16), pregnancy rate was higher (P=0.06) in cows 

injected with vitamins 45 d after artificial insemination (Figure 1).   

 

Table 1: Least square means (±SE) for the effect of injecting vitamin C and E on ovarian 

structures size, estrus presentation and hormone concentrations in Holstein dairy cows 

 Treatment  

Variable 
Control 

(n=28) 

Vitamin Cand E 

(n=32) 
P-value 

Time to estrus, h 57.1±4.89 58.4±4.57 0.67   

Diameter of the preovulatory follicle, mm 18.3±0.57 17.2±0.60 0.21  

Estradiol concentration, pg mL-1 45.1±3.12 46.8±3.26 0.71   

Area of the corpus luteum, cm2 6.9±0.39 6.7±0.37 0.74 

Progesterone concentration, ng mL-1 10.8±1.60 12.5±1.60 0.26 
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Figure 1: Pregnancy rate 35 and 45 days after AI in control group (black bars, n=28) and 

Holstein dairy cows injected with vitamins C and E (grey bars, n=32) 

 
Estrus synchronization is a reproductive tool used in dairy cattle to improve fertility because it 

makes possible to control the onset of estrus. However, most technicians prefer to use fixed-time 

artificial insemination because it avoids the need for estrus detection. In addition, it is very 

convenient because all the cows are scheduled to be inseminated at the same time. Based on 

previous findings, it was decided to incorporate vitamin C and E injections to a fixed-time artificial 

insemination protocol (T3) to increase the number of pregnant cows. Briefly, cows were injected 

i.m. with 250 µg of GnRH analogue on d 0, 7 days after administering an i.m. injection of 500 µg 

of cloprostenol. A second dose of GnRH was given to cows 48 h after injecting cloprostenol. 

Insemination was performed 14 to 16 h after the second injection of GnRH. Injections of vitamins 

C and E were carried out as mentioned in T2, but the first injection of vitamin C and E was given 

3 d after the first injection of GnRH. The second and third injections of VC were administered just 

after the second injection of GnRH and 2 d after artificial insemination.  

 

The effect of vitamin C and E injections on preovulatory follicle diameter (16.8 ± 0.70 vs 16.2 ± 

0.77 mm, for control group and cows injected with vitamins) and area of the corpus luteum (5.4 ± 

0.48 vs 6.1 ± 0.50 cm2, for control group and cows injected with vitamins) were not significant. 

Similar to previous results(20) and with T2, a greater percentage of cows were found to be pregnant 

30 and 45 d after artificial insemination in the group of cows supplemented with vitamins than 

those in the control. However, the differences are not significant, most likely because of the small 

sample size used in T3 (cows injected with vitamins, n=16. Control group, n=17), Figure 2.  
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Figure 2: Pregnancy rate 30 and 45 days after AI in control group (black bars, n=17) and 

Holstein dairy cows injected with vitamins C and E (grey bars, n=16) 

 
The results obtained show that VC injections in combination with vitamin E are a feasible way to 

improve dairy cattle fertility. This effect is not mediated by changes in preovulatory or corpus 

luteum size, nor by affecting estradiol or progesterone production. A likely explanation for the 

increased pregnancy rate in dairy cattle injected with vitamins C and E is that cows supplemented 

with vitamins produce better quality oocytes and embryos than those not supplemented.  

 

 

Conclusions 
 

 

In conclusion, contrary to current thought, evidence suggest that supplementation of vitamin C to 

dairy cattle improve fertility. However, there is a need to investigate the optimal dose and time of 

vitamin C supplementation to improve dairy cattle reproductive performance.  
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