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Abstract: 

An electrochemical prototype (ECP) was developmed and evaluated to determine NaCl 

electrical variables [volt (V), ampere (A), resistance (R) and power (P)] and its use in fresh 

cheeses. The ECP circuit consisted of two electrodes, an aluminum (anode) and a copper 

(cathode). The experimental parameters established in the ECP were distance between 

electrodes and the presence of a resistor. Seven treatment solutions were examined at 0, 2, 4, 
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6, 8, 10 and 12 g of NaCl/100 mL of water. Cheeses evaluated were a commercial cheese 

(Control) and a commercial light cheese. Treatment influenced (P<0.05) the electrical 

variables in NaCl solutions and cheeses. Regression analysis showed that the best fit was a 

quadratic model for the ECP. Prototype results showed that at higher NaCl concentrations, 

voltage and resistance decreased, while amperage and power increased. 

Key words: Adulteration, Cheese, Electrical potential, NaCl content, Quality assurance. 

 

Received: 26/06/2017 

Accepted: 08/02/2018 

 

 

Today, inappropriate eating habits have serious impacts on human health. Food intake with 

high levels of simple sugars, fats and mineral components such as NaCl present problems 

associated with obesity, hypertension, and chronic degenerative diseases. In the dairy 

industry, milk adulteration presents significant problems such as economic loss, deterioration 

of product quality, and threats to consumer health(1). Therefore, the dairy industry employs 

several often expensive and time consuming chemical and physical tests to determine fat and 

total solids content(1). Thus, technological alternatives based on electrical circuits have been 

used to assess the quality of milk(2,3), conductance effects of milk components(4), the presence 

of adulterants(1), and to evaluate fat content(5). Electrical circuit technology also has been 

applied to cheese to study dielectric properties for thermodynamic analysis of salt(6), and 

fractal and dynamic analysis of water(7). 

Electrical conduction properties of a material represent its ability to interact in an electric 

current(4,8). Electrical properties of meat, milk, fruits and derivatives are dependent on the 

chemical composition, measurement parameters of the current, and the experimental 

conditions(1). Foods containing positively or negatively charged electrolytes, charged 

molecules, or charged macromolecules are capable of transmitting an electric current(9). In 

the case of foods, it is necessary to have mobile “carriers” for the cations and anions, being 

influenced by salinity, formulation, aggregation state, molar mass, link type, charge and the 

number of charged carriers(9,10). 

According to Figura and Teixeira(9), an electric current (I) will flow through a food sample 

containing ions as part of an electrical circuit. The strength of the electric current will be 

determined by the electrical resistance [R; 1 volt (V) * ampere (A-1) = 1 Ohm (Ω)] of the 

food sample, where R limits the flow of electric current through the sample. Therefore, a 

linear relationship exists between voltage [V represented as U], current, A, and electrical 
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resistance, R, within an electrical circuit, which is known as Ohm's Law [I = (1/R)*U; o I = 

G * U]. In order to be independent of sample and circuit geometry in performing certain types 

of calculations, it is necessary to introduce material properties, specific electrical resistivity 

(ρ; in Ω*m), and specific conductivity (κ; in S*m-1); where κ depends only phase state, 

moisture content, and chemical composition, and not sample size, expressed as R = ρ * (Ɩ/A) 

or κ = 1/ρ, where Ɩ is length in m, and A is current area in m2(9,11).  

Milk is an electrolyte characterized by ionic conductivity due to its high water content and 

minerals content(5), as determined by: 1) Current measurements including voltage, frequency, 

pulse shape and type of electric current (direct, variable, alternating); 2) Chemical 

composition of fresh material [water content and ion (Ca, Na, K, Mg, Cl) concentrations and 

components of dry matter such as fats, proteins and sugars]; 3) The experimental conditions, 

especially temperature. Meanwhile, cheese is a colloidal system consisting of protein, fat and 

an aqueous phase in electrical balance where salt is a common component used in the dairy 

industry to preserve cheese quality(6). 

In this study, an electrochemical prototype (ECP) was developed and evaluated to measure 

NaCl concentration as alternative to evaluate the NaCl fastly. The ECP consists of an 

experimental galvanic cell to generate electricity through a spontaneous redox reaction(12), 

and includes two electrodes and an ionic conductor, which may be a liquid or a solid(13). The 

objective of this study was to develop and evaluate the ECP consisting of a copper cathode 

and an aluminum anode, and an ionic conductor (NaCl solutions and fresh commercial 

cheeses) to measure voltage, electric current, resistance and power as reflections of NaCl 

content. 

The research was conducted at the Laboratory of Environmental Remediation and Soils 

Analysis, Water and Plant of the Facultad de Agronomía, Universidad Autónoma de Nuevo 

León, General Escobedo City, Nuevo León, México. General Escobedo is located at 26°49' 

N, -100°19' W and altitude of 500 m(14). The ECP system consisted of two electrodes, an 

aluminum anode and a copper cathode, with electrode dimensions of 4.5 cm long x 4.5 cm 

high x 0.15 cm wide. A multimeter (Model 2700/Switch System Keithley, Ohio, USA) was 

used to measure variables V and A throughout the experiment. A resistor (Ф; 100 Ω tolerance 

± 5%) was used to complete the electrical circuit (Figure 1a’). 
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Figure 1: Circuit design of the electrochemical prototype (a’), and circuits to determinate 

Volt (a, b), Ampere (c) and distance (d) between electrodes (4.0 and 0.5 cm) 

 

Experimental conditions for evaluation of the ECP were separation distance (δ) between the 

electrodes (0.5 and 4.0 cm) and resistor presence (with or without the resistor), during 

measurement of electrical variables. Variation of distance and presence of the resistor in the 

circuit were used to define how ECP measurements varied under these conditions in order to 

obtain the optimum configuration of ECP design. The experiment consisted of seven 

treatment solutions (Ƭi), based on NaCl concentrations of 0, 2, 4, 6, 8, 10, 12 g of NaCl/100 

mL of water. Deionized water (CTR Scientific, Monterrey, N.L., México) at room 

temperature (24 °C) was used to prepare the solutions. The electrodes were inserted 2.0 cm 

into each solution, separating them by distances of 0.5 and 4.0 cm (Figure 1d), and with the 

presence or absence of the resistor (Figure 1a-b) in the circuit (δ with Ф and δ without Ф; 

Figure 1a-d). These conditions were established to measure variable V. To determine 

amperage (Figure 1c), it was necessary to place a resistor in the electrical circuit. Variables 

V and A were used to estimate the R, based on Ohm's Law(15). Power (P) in watts was 

determined with the following equation: P = V I(15). The experiment was replicated twice, 

and measurements were performed in duplicate. 

The ECP was evaluated in 400 g each of two fresh commercial cheeses: a standard (Control) 

cheese and a light cheese (Light) low in calcium, sodium and fat (Table 1). The cheeses 

dimensions were 12 cm in diameter and 4 cm high. The electrical variables V, A, R and P in 

cheese were determined according to conditions determined in the ECP evaluation (Figure 

1). Electrodes were introduced 1.5 cm into cheeses, and electrodes were placed at distances 

of 0.5 and 4.0 cm. Varying the distance between electrodes was done in order to validate the 

optimum distance between electrodes and whether a resistor in the circuit was required when 

amperage was measured, and to determine the optimum conditions for measuring the 

electrical variables and their variation in cheese. The measurements were conducted in two 

replicates per type of cheese and each variable was measured in triplicate. A 10-g sample of 

each cheese in triplicate was homogenized in 90 mL of distilled water, and pH was 

determined with a potentiometer (Mettler Toledo, Probiotek; Columbus, OH, USA). 

(d) 

(a’) 
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Table 1: Nutritional composition of the cheeses 

Trait 
Composition (g/20 g of cheese)* 

Control Light 

Carbohydrate 0.60 0.50 

Protein 3.40 4.00 

Fat 5.20 2.80 

Calcium 0.11 § 

Sodium 0.11 0.08 

Moisture and other components  10.57 12.62 

*Data taken from the commercial product package. 
§ = not present 

 

The statistical evaluation of the ECP was carried through of an analysis of variance 

(ANOVA) with the GLM procedure of SAS(16), using the statistical model:  

yijk = µ + Ƭi + δj + Фk + (Ƭδ)ij + (ƬФ)ik + (δФ)jk + (ƬδФ)ijk + Ԑijk; 

Where: 

yijk = evaluated variables V, A, R and P;  

μ = general mean;  

Ƭi = fixed effect of the ith treatment (NaCl solutions and cheeses);  

δj = fixed effect of the jth distance between the electrodes;  

Фk = fixed effect of the kth condition of the resistor;  

(Ƭδ)ij = fixed effect of the interaction between treatment and distance;  

(ƬФ)ik = fixed effect of the interaction between treatment and the resistor;  

(δФ)jk = fixed effect of the interaction between distance and the resistor;  

(ƬδФ)ijk = fixed effect of the triple interaction between treatment, distance and the resistor;  

Ԑijk = random error normally distributed with zero mean and variance σ2 [Ԑijk ~ N (0, σ2)]. 

The pH analysis of cheese involved a simple ANOVA. The effect of the independent variable 

NaCl on dependent variables V, A, R and P was analyzed with ANOVA, linear regression 

analysis and the REG procedure of SAS(16), and the following second order quadratic 

statistical model(17):  

yi = β0 + β1X1 + β11𝑋1
2 + Ɛi; 

Where:  

yi = dependent variable y influenced by X (NaCl);  
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β0 = intercept to the origin when X = 0;  

β1 = linear regression coefficient, which represents the change of y when X (NaCl) increases 

one unit;  

X1 = values of the ith solution of independent variable X1 (NaCl);  

β11 = regression coefficients of second order and represent the change in y when X1 increases 

by an increment of one unit quadratically; 

 𝑿𝟏
𝟐 = value of the ith quadratic solution of independent variable 𝑋1

2 (NaCl2);  

Ɛi = random error of the ith observation by effect of independent variable (X1) on y.  

A Tukey means comparison was performed by setting a 0.05 confidence level. 

Table 2 presents the statistical effect (P-value) of factors evaluated in the ECP on the 

variables measured in saline solutions. Distance (δj) and its interaction with NaCl treatment 

[(Ƭδ)ij] were not statistically significant (P>0.05) for the electrical variables evaluated (yijk). 

However, the NaCl concentration (Ƭi) did influence (P<0.05) the variables measured in the 

solutions. These results indicate that a distance of 0.5 or 4.0 cm can be used in the ECP design 

to measure the electrical variables in these solutions without changing the variable values. 

Amperage was measured only with presence of the resistor in the circuit, therefore, statistical 

P-value was not calculated for resistor (Фk) interaction with NaCl [(ƬФ)ik], distance [(δФ)jk] 

and triple interaction [(ƬδФ)ijk] between treatment, distance, and resistor. 

 

Table 2: Effects of model parameters on variables evaluated in NaCl solutions by the 

electrochemical prototype 

Model 

parameters* 

P-value 

Volt Ampere Resistance Power 

Model 0.3902 0.0007 0.0007 0.0003 

Ƭi 0.0076 < 0.0001 < 0.0001 < 0.0001 

δj 0.3768 0.8698 0.3705 0.7297 

Фk 0.1794 § - - 

(Ƭδ)ij 0.9202 0.7314 0.6128 0.4448 

(ƬФ)ik 0.8566 - - - 

(δФ)jk 0.9527 - - - 

(ƬδФ)ijk 0.9971 - - - 

µ ± Ԑijk 0.564 ± 0.007 2.615 ± 0.097 220.333 ± 7.562 1464.686 ± 37.189 
* Ƭi = i-th treatment (NaCl); δj = j-th distance; Фk = j-th resistor condition; (Ƭδ)ij = interaction between treatment and 

distance; (ƬФ)ik = interaction between treatment and resistor; (δФ)jk = interaction between distance and resistor; (ƬδФ)ijk = 

triple interaction between treatment, distance and resistor; μ ± Ԑijk = mean ± standard error. n = 42. 

§ = not detected. 
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The electrical conductivity measured in NaCl concentrations (Ƭi) by the ECP is presented in 

the Table 3. Concentrations 2, 4 and 6 g of NaCl/100 mL of water gave the highest voltage 

values, while the control at 0 g of NaCl/100 mL of water gave the lowest value (P<0.05). 

The higher NaCl concentrations, including 6 g of NaCl/100 mL of water, showed high 

ampere and power, but lower values for resistance. Muske et al(18) evaluated electrical 

variables in lemon juice while varying NaCl concentrations. The conclusions from that study 

were that the presence of weak acids directly influenced electron transfer and mainly affected 

the magnesium anode, while the addition of NaCl blocked interaction of the acid on the 

electrode surface, and resulted in the decrease in electric potential.  

 

Table 3: Electrical conductivity measured in solutions of various NaCl concentrations by 

the electrochemical prototype 

NaCl* (Ƭi)  
Variables¶ 

Volt Ampere Resistance Power 

0 0.539b § - - 

2 0.576a 2.055b 277.810a 1,168.018b 

4 0.576a 2.240b 253.215ab 1,267.343b 

6 0.580a 2.715a 212.785bc 1,553.998a 

8 0.566ab 2.663a 211.610c 1,499.765a 

10 0.553ab 2.960a 186.723c 1,626.340a 

12 0.556ab 3.058a 179.858c 1,672.655a 

SE 0.007 0.088 9.110 45.778 

* NaCl in g/100 mL of water. 

¶ Means (n = 42) with the same superscript are not significantly different. SE = standard error. 

§ = not detected. 

 

Regression analysis of the ECP validation (Table 4) showed significant effect (P<0.05) for a 

linear behavior, and indicated that the best fit for the electrical variables was a quadratic 

model. In the case of V, the ECP detected a decrease of -0003 V and R a reduction of-19 Ω 

for each increase in the NaCl concentration. In contrast, in A and P were detected more than 

0.17 and 107 for each unit increase in sodium concentrations, respectively. The quadratic 

parameter (β11) was found appropriate for detection of decreases in the V, A and P parameters 

and an increase in R with the NaCl variation. 
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Table 4: Regression (β) and determination (R2) coefficients in validation of the 

electrochemical prototype 

Dependent 

variable  

Regression coefficients* R2 
P-value 

β0 β1 β11 Linear Quadratic 

Volt  0.563 -0.003 - 0.0004 0.2127 0.2664 0.0387 

Ampere  1.712 0.173 - 0.0051 0.7854 0.8024 < 0.0001 

Resistance  314.511 -19.289 0.6733 0.7756 0.8064 < 0.0001 

Power  959.196 107.242 - 4.0418 0.7384 0.7785 < 0.0001 

* β0 = intercept when X = 0; β1 = change in y when X (NaCl) increases one unit; β11 = represent the change in y when X1 

increases one unit quadratically; R2 = determination coefficient. 

 

The significance level (P-values) of statistical parameters and means of cheese variables are 

present in Table 5. The type of cheese (Ƭi) statistically affected V, A, P and pH (P<0.05), 

while distance (δj) affected V (P<0.05). The interaction between cheese and distance [(Ƭδ)ij] 

did not influence the variables. In other parameters involving resistance, P-values were not 

presented for interactions, because the resistor was included in the circuit to measure 

amperage only. In mean comparisons, control cheese showed the highest values for V, A and 

P but lower values for R and pH with respect to light cheese. Voltage at the 4-cm distance 

was the highest compared to V at 0.5 cm. These results may be related to the composition of 

control cheese, because it had a higher lipid content, and, consequently, a greater presence 

of fatty acids available in the system, influencing oxidation at the anode. For example, some 

acids such as CH3COOH are weak electrolytes, and are not completely ionized, being a 

reversible reaction that gives H+ ions in the medium, and with the presence of metals such as 

Zn, Mg and Fe conduct electricity(12). Moreover, dissolved hydrogen (H+) in solution is 

reduced in the absence of copper by the effect of electrode oxidation to H2
(19), affecting the 

electrical variables measured in cheeses. Sadat et al(1) indicated that dielectric properties of 

foods depend of their chemical compositions. The reactions determined in the current study 

could explain the high values found in the control cheese, with higher fat content, Ca and Na 

with respect to the light cheese. Hence, this prototype can be used to evaluate the fat and Na 

content in cheeses to evaluate its quality and levels of this variables respect to Mexican 

official standars. 

 

 

 

 



Rev Mex Cienc Pecu 2019;10(1):161-171 

169 
 

Table 5: Effects of model parameters on variables evaluated in cheeses with the 

electrochemical prototype 

Model 

parameters* 
Volt Ampere Resistence Power pH 

P-value 

Model 0.0008 0.2118 0.2821 0.1505 § 

Ƭi 0.0004 0.0421 0.0867 0.0312 < 0.0001 

δj 0.0118 0.5687 0.4656 0.4322 - 

Фk 0.0639 - - - - 

(Ƭδ)ij 0.3775 0.9026 0.5623 0.8712 - 

(ƬФ)ik 0.2091 - - - - 

(δФ)jk 0.9773 - - - - 

(ƬδФ)ijk 0.3930 - - - - 

Commercial cheeses (Ƭi; µ)¶ 

Control 0.528a 1.082a 507.307b 568.701a 6.530b 

Light 0.512b 0.982b 536.689a 505.675b 6.755ª 

Distance (δj; cm) 

0.5 0.515b 1.021 525.609 527.127 - 

3.0 0.526a 1.044 513.388 547.250 - 

Resistor (Фk) 0.520 1.032 519.498 537.188 - 

(Ƭδ)ij 0.520 1.032 522.590 542.330 - 

(ƬФ)ik - - - - - 

(δФ)jk - - - - - 

(ƬδФ)ijk - - - - - 

SE 0.003 0.024 9.378 15.394 0.013 
* Ƭi = i-th treatment (cheeses); δj = j-th distance; Фk = j-th resistor condition; (Ƭδ)ij = interaction between treatment and 

distance; (ƬФ)ik = interaction between treatment and resistor; (δФ)jk = interaction between distance and resistor; (ƬδФ)ijk = 

triple interaction between treatment, distance and resistor; 2 μ ± Ԑijk = mean ± standard error (SE); n = 12. 

§ = not detected. 

¶ Means (n = 12) with the same superscript are not significantly different. 

 

The voltage and resistance are variables that can measure with the electrochemical prototype 

due that these variables decrease at higher concentrations of NaCl, while amperage and 

power increased. The distances between the electrodes and presence of the resistor in the 

circuit had no influence on levels of the electrical variables accessed, but the resistor is 

necessary to determine of resistance data. The electrochemical prototype perceived 

differences in the electrical variables (volt, ampere, resistance, and power) of cheeses 

according to their chemical composition. Therefore, this prototype could be used to evaluate 

the minerals and quality of the cheeses with the volt, ampere, resistance and power. 
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