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Abstract: 

Use of natural source additives in animal production is increasingly important because 

they potentially promote growth in ways similar to synthetic compounds, such as 

anabolic hormones and antibiotics, but without risks to animal or consumer health or 

degrading meat quality. Encompassing a wide variety of compounds extracted from 

different plant parts, natural origin additives can be administered as essential oils, 

mixtures of compounds or isolated compounds to function as medicinal remedies or 

dietary supplements. Phenolic compounds are widely used and include 

hydroxycinnamic acids, present in a variety of vegetables, fruits and grains. These acids 

exhibit interesting bioactivities such as antioxidant, antimicrobial, prevention of 

cardiovascular diseases and immunomodulation. Use of hydroxycinnamic acids in 

animal production is currently limited but may hold promise in promoting growth. 

Before this can occur further research is needed on their pharmacokinetics and 

pharmacodynamics, posology, exposition period and effects, as well as their possible 

metabolic routes and biotransformation in animal organisms. This review covers 

inclusion of hydroxycinnamic acids in livestock diets, their pharmacokinetic properties 

and pharmacodynamics, and findings on their effects in promoting growth and 

improving meat quality. 

Key words: Hydroxycinnamic acids, Ruminants, Monogastrics, Pharmacokinetic, 

Pharmacodynamic, Growth promoter. 

 

Received: 12/06/2017 

Accepted: 26/04/2018 

 

 

Introduction 

 

 

Use of synthetic growth promoters in animal production results in better feedlot weight 

gain, and higher lean meat yields(1). However, they are known to have negative 

repercussions which can affect some meat quality parameters(2,3), and to pose an 

intoxication risk due to retention of synthetic compound residues in the organs and 

meat(4-7). Due to their potential risks use of these compounds has been restricted in the 

European Union and many Asian countries(4). This constitutes a limiting factor for 

meat-exporting countries that use this technology which can lead to substantial financial 
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losses. The meat industry has responded by searching for safe alternatives for promoting 

growth in livestock. 

A promising alternative is the use of natural vegetal-source compounds, better known as 

phytochemicals (PC). These are non-nutritional secondary metabolites used by plants to 

protect themselves against microorganisms, pests and herbivores. Classification of PC is 

complex because it can be based on their properties (e.g. biological function), origin, 

purity, or chemical structure (e.g. polyphenols, isoprenoids, essential oils and 

phytoestrogens)(8,9). Phytochemicals can be administered as whole portions of a plant 

(e.g. roots, leaves, bark), their by-products, or as bioactive compounds in essential oils, 

isolated compounds or mixtures of compounds(10). 

After being used for years in humans as alternative medicine and remedies for chronic 

conditions most PC are classified as generally-recognized-as-safe (GRAS)(7,11). They are 

beginning to find a role in animal production systems as a way to fight infections and 

improve animal health status, and thus attain optimal development throughout the 

growth stages. This may allow the eventual replacement of routinely applied synthetic 

compounds such as antibiotics, hormones, and β-adrenergic agonists(12). 

Among the PC are the hydroxycinnamic acids (HA), a group of phenols present in the 

fruits, roots, grains and seeds of plants. The best known of the PC are caffeic acid, 

ferulic acid, p-coumaric acid, sinapic acid and chlorogenic acid(13). Used to fight disease 

and illness in humans, these acids can also be added to animal feed or administered 

separately to affect physiological changes that can contribute to growth(14). Recent 

studies report improved growth performance, animal health and meat quality when HA 

are exogenously supplemented in animal diets(15,16,17).  

Understanding the mechanism for this action will require research into HA 

pharmacokinetics (i.e. absorption, distribution, metabolism and excretion), average time 

of efficacy, bioavailability and pharmacodynamics. In addition, information is needed 

on the direct relationship between HA and their action sites, biotransformation and 

physiological modifications, and how they are changed during metabolism(18).  

The most controversial aspect of HA use, and that of most natural additives, is their 

posology and the possible routes involved in growth, muscle deposition and nutrient 

utilization. These are needed before HA can be suggested as possible alternatives to 

synthetic growth promoters. This review addresses the possible absorption pathways of 

HA, their biotransformation and the metabolic changes they experience when added to 

growth diets in animals with the purpose of promoting growth without adversely 

affecting meat quality. 
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Hydroxycinnamic acids: definition, sources and properties 

 

 

Hydroxycinnamic acids (HA) are derived from cinnamic acid and are common in plants 

and fruits in the form of organic acids or glycoside esters, or attached to proteins and 

other cell wall molecules such as cellulose, xylans and lignin(13,19). Plentiful in plants, 

they are secondary metabolic products known to be used in defense against pathogens 

and insects(8,20). They are synthesized via the shikimate pathway in which the amino 

acid phenylalanine is the precursor to HA. Recent research has addressed their potential 

bioactive effects and benefits in humans and animals when administered as nutritional 

supplements. Reported bioactive properties include antioxidant, antimicrobial, 

prevention of chronic diseases such as cancer and atherosclerosis, and growth 

promotion in animals(21,22,23). 

The HA can be extracted from plant cell walls by alkaline and enzymatic 

methods(24,25,26). Their basic structure is a phenylpropanoid, with caffeic acid being the 

most common in nature(27). 

The hydroxyl groups present in the aromatic ring of HA makes antioxidant activity their 

main attribute(22). This activity has been demonstrated in both in vivo and in vitro 

models aimed at preventing or treating diseases related to oxidative stress, such as 

cancer, diabetes, cardiovascular disorders and inflammatory diseases(13,28,29,30). There is 

increasing interest in their antimicrobial capacity since they are known to inactivate or 

eliminate pathogenic bacteria and can modify the intestinal microflora, possible 

improving nutrient use and reducing disease incidence by promoting optimal immune 

system functioning(31,32,33). These capacities highlight their wide range of possible 

applications in growing animals; initially they could replace synthetic growth promoters 

but their bioactive properties could provide additional advantages. 
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Hydroxycinnamic acids as additives in growing animals 

 

 

Increasing research is being done on HA supplementation in livestock systems and their 

potential biological activities. This responds to changing perspectives among meat 

consumers who now demand healthier products from natural sources with the purpose 

intent of avoiding any health risks and impacts on meat quality caused by ingestion of 

synthetic compounds. 

When used as additives HA can act in diverse ways, including as antibiotics, 

ionophores, antioxidants, anti-inflammatories, anabolics or flavor enhancers. In most 

cases they exercise these activities without compromising animal health or meat quality 

(Figure 1)(34,35). Unlike some synthetic substances, which can only be used for limited 

periods and/or in a specific growth phase, the HA and other PC compounds are not 

apparently limited to a specific phase, nor do they cause damage from residual 

effects(36,37,38). 

 

 

Figure 1: Principal hydroxycinnamic acids, sources, structure and benefits in animal 

production 
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Hydroxycinnamic acids in growth performance and carcass quality 

tests 

 

 

Limited research has been done on inclusion of isolated HA in growth performance tests 

and there is still insufficient evidence to claim productive benefits in animals(10,39). 

Ferulic acid (FA) has been tested recently in growing animals in search of a possible 

growth-promoting effect, but its effects have been contradictory and inconsistent and no 

action mechanism has been identified. 

In pigs receiving 100 mg FA/kg feed for 28 d no improvements were observed in 

productive performance or primary carcass cuts(40). Lambs supplemented with 300 mg 

FA/d for 34 d exhibited no differences in productive performance versus a control, 

although carcass rib eye area did improve with FA (control= 16.61 vs FA= 18.0 cm2), 

possibly an indication of increased muscle tissue deposition(41).  

In a study in which two FA doses (5 and 10 mg/kg live weight/d) were administered in 

finishing heifers, daily weight gain was higher in the FA treatments (1.02 and 1.24 kg/d, 

respectively) than in the control (0.93 kg), and feed conversion improved by up to 20 %. 

Carcass yield in the FA treatments increased by 1.64% over the control, and rib eye area 

was greater in the 5 mg FA treatment than in the control (85.61 vs 82.12 cm2)(42). 

A study in which 15 mg FA/kg feed was supplemented in finishing pigs found dorsal fat 

thickness to be similar between treatments using the β-agonist ractopamine (9.60 mm) 

and FA (9.67 mm)(43). This suggests possible activation of hormone-sensitive lipase 

(responsible for lipolysis) in subcutaneous fat, with much of the resulting energy 

redirected to other metabolic functions such as muscular deposition. Ferulic acid has 

also been reported to increase synthesis of endogenous hormones, including prolactin 

and growth hormones, which may translate into greater muscle deposition(44). However, 

more research is needed at the cellular level and of blood metabolites to determine if FA 

acts as an anabolic-type growth promoter. 

Pure cinnamic acid has not yet been studied in vivo in growing animals. However, in an 

in vitro study cinnamic acid was found to be recognized in the 3T3-L1 cells of 

adipocytes, to stimulate the AMPk activation and to improve insulin sensitivity, 

possible altering the fatty acids profile(45). Cinnamaldehyde is not a HA but is present in 

sources similar to cinnamic acid; indeed, in animals cinnamic acid can be synthesized 

from this compound. In one study supplementation with cinnamaldehyde (400 and 800 

mg/d) in beef cattle for 28 d improved daily weight gain (2.18 and 2.08 kg 

[respectively] vs 1.97 kg control), and rib eye area was greater than in the control (89.5 

vs 86.3 cm2)(46). The authors suggest that cinnamaldehyde modifies microbial 

populations and the volatile fatty acids profile, which can improve nutrient digestion, 
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reduce methane gas production and thus allow rerouting of this energy to muscle 

growth. However, high doses of cinnamaldehyde (1,600 mg/d) can decrease ruminal 

fermentation and thus diminish availability of protein from microbes and feed, 

compromising animal nutrition(47).  

In ruminants, HA such as cinnamic acid, p-coumaric acid and ferulic acid may be lost in 

the ruminal fluid by absorption and utilization by rumen microorganisms, or 

hydrogenation by specific bacteria, thus limiting growth(48). In contrast, other authors 

claim that the phenolic monomers in forage can be released and absorbed in the 

gastrointestinal tract, possibly providing benefits to the animal(49,50). 

Tests of FA in vitro and in mice have shown it to have possible fat reducing activities 

caused by an adipocyte dysfunction involving lower growth of preadipocytes to the 

detriment of fatty acids and cholesterol in the liver and plasma(51,52). Both caffeic acid 

and chlorogenic acid inhibit enzymes responsible for synthesis of fatty acids such as 

fatty acid synthase and 3-hydroxy-3-methylglutaryl CoA(53,54).  

The revised literature suggests that HA supplementation in cattle has a growth 

promoting effect. However, more research is needed to confirm this promoter activity 

since some studies report the contrary. For example, in two studies of ruminal culture 

employing 0.2 % p-coumaric acid and chlorogenic acid, the phenolic monomers in the 

forage or those added to the diet negatively affected the rumen, acting as antimicrobials 

in cellulolytic populations, and limiting use of energy from forage structural 

carbohydrates(50,55). However, the HA in forage lignin exhibit digestibility in different 

sections of the gastrointestinal tract primarily the rumen, abomasum and ileum 

suggesting the presence of various interactions, both positive and negative, between HA 

and the biological processes of digestion and metabolism in ruminants(50). 

Based on studies of FA in pigs and cattle in which doses and times have been tested, 

low doses (5 mg/kgLW/d) for periods not greater than 30 d can be suggested for 

supplementation with HA when seeking a growth promoter effect. That said, each 

monomer can act, absorb and metabolize in different ways, meaning that it is vital to 

closely monitor animal health status when supplementing HA for productive purposes. 

 

 

Changes in meat quality in animals receiving hydroxycinnamic acids 

as supplements 

 

Oxidation and microbial growth are the principal causes of reductions in meat quality 

since they diminish its nutritional, sensory, functional and health properties for the 

consumer. This generates a breakdown in the animal production chain and 

consequently, significant financial losses for the meat industry(56,57). 
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With the aim of improving the quality and stability of meat and meat products the 

industry has tested both synthetic and natural antioxidants(58,59,60). Using the animal’s 

metabolism, additives are included in the diet to reduce oxidation processes, formation 

of volatile compounds and microbial deterioration in the meat, while maintaining its 

nutritional quality and extending its shelf life(31,61).  

A wide variety of compounds and mixtures are used in animal diets to exert a protective 

effect on meat; one common example is vitamin E(62,63,64). Although little research has 

been done on HA in animal diets these compounds are known to have high antioxidant 

capacity, especially ferulic acid, caffeic acid and p-coumaric acid. They can therefore be 

seen as possible nutritional supplements aimed at preventing lipid oxidation in meat by 

inhibiting formation of primary and secondary products (e.g., malondialdehyde - 

MDA)(17,40,65,66).  

Phytogenic substances are known to improve the quality of pork and beef(67,68); for 

example, administration of FA administered at 5 or 6 mg/kgLW/d for 30 d in beef cattle 

diets retarded lipids oxidation(17,69). Values less than 1 mg MDA/kg meat were recorded 

at up to d 10 of storage under refrigeration and metmyoglobulin formation was lower in 

the supplemented treatments than in the control, confirming a protective effect against 

oxidation of polyunsaturated fatty acids and myoglobin protein(17,69). In another study a 

mixture of FA (100 mg/kg feed) and vitamin E (400 mg/kg feed) were found to have a 

protective effect when added to diets for finishing pigs, resulting in lower muscle 

tetrabutylammonium (TBA) values and lower meat hardness than in the control(40). 

It is important to consider, however, that supplementation of PC for long periods or at 

high doses can cause a pro-oxidant effect in meat and accelerate fatty acids and protein 

oxidation. For example, supplementation with FA in beef cattle at 6 mg/kgLW/d for 60 

d(17) or 10 mg/kgLW/d for 30 d(69) prior to slaughter, produced more than 2 mg MDA/kg 

meat beginning on d 3 of storage and formation of up to 30% myoglobin after 7 d of 

storage. This pro-oxidant effect of FA after long-term or high-dose supplementation 

may be due to accumulation of high levels of FA in the muscle, providing a stimulus for 

oxidation onset. High concentrations of antioxidants are known to affect the stability of 

trace metals, possibly altering myoglobin stability and leading to its oxidation(70,71). 

During animal growth in commercial livestock systems vitamin E is commonly used 

during the finishing phase and prior phases to maintain color stability in meat and retard 

its oxidation during storage(58,60). Hydroxycinnamic acids (HA) can exert a similar 

benefit as well as a growth promoter effect in animal metabolism and HA deposition in 

muscle. They can thus provide a double benefit or even be used as an adjunct to vitamin 

E. This synergistic combination has been tested in pigs in a study in which a mixture of 

FA (100 mg/kg feed) and vitamin E (400 mg/kg feed) halved MDA content in the 

Longissimus dorsi muscle and increased rib eye area compared to a control (44.70 vs 

37.17 cm2)(40). Clearly, certain combinations of compounds can provide benefits for 

livestock producers. 
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Pharmacokinetics of hydroxycinnamic acids in animal production 

 

 

Pharmacokinetics research on PC, particularly those on use of HA in growing livestock, 

are still limited and inconclusive. However, some reports do show that supplementation 

or intake of these compounds allow them to reach the portal system and thus attain 

bioavailability in the organism(72-76). 

Pharmacokinetics refers to the route taken by a drug or compound in an organism, from 

intake to excretion, including absorption rates in different organs. A substance’s 

pharmacokinetic will indicate to what degree, if any, it is used by the organism. 

Whether in a pure form or in combination others, it has been proposed that HA are 

absorbed to some extent in the stomach and in a greater proportion in the intestine, thus 

reaching the bloodstream and eventually exerting physiological changes such as 

reducing oxidation in tissues such as the liver and muscle(23,77). However, absorption 

rates of these compounds in the gastrointestinal tract and their ability to reach to the 

bloodstream may vary due to enzymes, microorganisms in the rumen or intestine, stress 

factors, animal species and biotransformations such as glycosylation or sulfation(72,78). 

Many HA are quite small, meaning they can cross the gastrointestinal barrier by passive 

diffusion, mainly in the stomach and small intestine, and go on to be absorbed and 

deposited in different organs with the help of transporters such as albumin(54). Once 

absorbed these compounds subsequently change polarity, becoming more hydrophilic, 

and are excreted in their glycosylated form in the urine(79). Discovering a possible route 

and the pharmacokinetics of HA in growing animals is complex and most studies have 

employed murine models to this end(33,80). Absorption varies in response to species, diet, 

physiology, health status and genetics, among other factors. Understanding which HA 

are most effective and/or more bioavailable in the organism can be aided by reviewing 

reports for ruminant and monogastric models. 

 

 

Hydroxycinnamic acid pharmacokinetics in ruminants 

 

 

The metabolism and kinetics of PC, including HA, in ruminants is very complex. 

Several modifications occur mainly in the rumen; indeed, the first action site for HA 

modification is the rumen. It is here that microbial populations and the anaerobic 
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environment cause rapid hydrogenation of phenolic compounds, followed by 

dehydroxylation and subsequent biotransformation into phenylpropionic acid. This 

phenylpropionate is then absorbed in the bloodstream for transport to the liver, 

transformation by β-oxidation and finally excretion in a glycosylated form or as a free 

acid(81). 

Some pharmacokinetic studies have addressed the route and modification of ferulic 

acid, caffeic acid and cinnamic acid in ruminants. Two studies of FA supplemented in 

sheep and lactating cows found that it was absorbed within the first 5 h post-

administration. Sampling was done at shorter intervals in cows and showed that FA may 

experience rapid absorption since levels increased at baseline and during the first 6 h 

post-administration but then returned to baseline levels at fourteen hours. It is also 

possible that a portion of the compound was not modified in the rumen and was 

subsequently absorbed in low concentrations(72,73).   

A wide variety of dietary origin phenolic compounds are present in the rumen fluid, 

with 3-phenylpropionic acid being the most abundant (50 to 80 %), and cinnamic acid 

being a minor component (7 %)(49,82). The structure of HA in the rumen depends on 

rumen microorganism profile and HA dose; an approximately 0.4 % HA 

supplementation level in the diet can impair animal growth and diet utilization(55). 

Degradation of forage, particularly lignin, can also be compromised by HA release, 

especially FA, since it limits growth of cellulolytic bacteria. Due to its stronger ester 

bonds, release of p-coumaric acid occurs at lower levels than FA(50,83). Rumen 

cellulolytic bacteria are responsible for degrading phenolic compounds through 

hydrogenation of the HA side chain, which limits their bioavailability. Future research 

needs to focus on the different microorganism species in the rumen and how they 

generate significant changes in administered HA. It would also be of interest to quantify 

changes in microbial populations and volatile fatty acids, which are important in the use 

of nutrients in ruminants(72,84). 

Biotransformation of HA in the rumen can be prevented by encapsulating or 

saponifying the compounds, allowing them to reach target tissues and exert any 

bioactive effects. Encapsulation involves formation of small lipid particles (i.e. nano- 

and micro-particles) capable of storing and stabilizing bioactive substances such as 

salts, amino acids, proteins or PC. The encapsulating substance needs to protect the 

bioactive substances from interaction with the environment and control their release at a 

specific site or soft tissue in the organism(85,86). Due to the complexity of the rumen 

bacterial community and its importance in nutrient use, different studies have focused 

on encapsulation as a way of directing compounds to target tissues, or of ensuring that a 

compound is used only by specific bacterial populations through controlled release. For 

example, substances such as resveratrol, fumaric acid, probiotics, conjugated linoleic 

acid, and ionophores, among others, have been used to reduce methane emission by 

changing the rumen bacterial population or stabilizing the intestinal microbiota(86-89). 
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Hydroxycinnamic acid pharmacokinetics in monogastrics 

 

 

In monogastrics phenolic compounds more easily preserve their structure and therefore 

experience a lower degradation-transformation rate. It is thus more probable that they 

can exercise some effect, mainly as antioxidants, because their rapid absorption and 

entrance into the bloodstream can prevent free radical generation by oxidative 

stress(23,40). Hydroxycinnamic acids have also been reported to be antimicrobial agents 

in the intestinal microbiota or against pathogenic species, and anti-inflammatory agents 

that improve nutrient absorption by improving bowel physiology(31). Understanding 

these activities, however, requires identifying the initial structure of the HA 

administered and all its subsequent structural changes, which may limit its effects(24,78). 

In monogastric animals such as pigs, cinnamic acid derives from cinnamaldehyde 

present in the feed, which later oxidizes into cinnamic acid in the stomach and small 

intestine. Average estimated life for this compound in this animal ranges from three to 5 

h post-administration. Certain HA may already be circulating in the bloodstream, but 

transporters are needed to convey them to the intended target tissue. Serum albumin is 

one of the principal metabolite carriers in the organism and has recently been shown to 

have affinity for chlorogenic acid, ferulic acid and cinnamic acid; this could be of 

interest for investigating its affinity in organs such as the liver, kidneys, intestine and 

muscle tissue(54). 

Studies with caffeic acid and ferulic acid have shown that, much like cinnamic acid 

(approximately 90 % absorption), these compounds are rapidly absorbed in the stomach 

and small intestine(25). Caffeic acid is rapidly absorbed within the first two hours post-

feeding, but, due to its non-ionized form, can also undergo passive absorption in the 

stomach(53). 

After absorption in the organism HA can be found intact in the plasma or urine, but also 

in conjugated forms such as glucuronide, sulfates or sulfa-glucuronides. However, 

depending on their interest in these metabolites, intestinal microbial populations can 

transform HA. Monocarboxylic acid transporters responsible for absorption of some 

phenolic acids (including HA) may be present in different tissues(24), and could be 

involved in transport of absorption processes in target tissues such as the liver, fat or 

muscle. 
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Hydroxycinnamic acid bioavailability 

 

 

When substances such as drugs or dietary compounds are administered to an organism 

they are subject to a series of mechanisms that alter their structure and reduce 

compound bioavailability and consequently any possible biological activity. 

Bioavailability can therefore be defined as the percentage or fraction of a compound 

available in an intact form that reaches the target tissue, considering any changes this 

compound may have experienced as it passes through each stage of the digestive 

process(90).  

Most phenolic compounds, including HA, have beneficial effects but exhibit very low 

bioavailability when included in diets. This may be because these compounds are 

embedded in the polymeric matrices of arabinoxylans, pectins and xyloglucans, limiting 

their potential action in the organism. In addition, microbial changes produced in the 

gastrointestinal tract can produce conjugated forms of HA(24, 91,92). Most studies focused 

on the use of plants and plant extracts in livestock involve a large number of phenolic 

compounds, including HA. This makes it difficult to determine which of these 

compounds is responsible for any observed improvement in animal growth, health status 

or metabolic changes. True in vivo availability is actually limited and possible benefits 

are attributed to mixtures of compounds and conjugated forms rather than to individual 

compounds(31,34,36,93); in vitro studies are therefore needed to test isolated HA.  

Studies  in ruminants  report  that  in  the  ileum  FA  (4 mg/ml)  and  p-coumaric  acid 

(9 mg/ml) are released from forage. These levels are notably higher than in the rumen 

(< 1.0 mg/ml), possibly due to the complexity of the matrix and the enzymes and 

microorganisms that structurally modify these monomers(50,83).  

Encapsulation is a promising strategy for improving the probability that HA arrive at 

target tissues. Some studies using other matrix-immersed compounds have shown that 

they can exert significant effects on animal metabolism. In one study, dairy cows were 

administered an encapsulated cinnamaldehyde and gallic acid mixture (300 mg/d) for 15 

d, which increased total rumen volatile fatty acids concentration vs the control (108.9 

mmol/L vs 98.3 mmol/L) and improved milk production (3 kg/d more than control)(94). 

The authors attribute this increase largely to modification of rumen microbial 

populations which raised AGV by reducing methane gas generation, thus allowing more 

efficient use of the energy in the feed. A different encapsulated mixture of 

cinnamaldehyde (100 g/t feed) and thymol (150 g/t feed) administered in pigs improved 

daily  weight   gain vs a control (0.45 vs 0.37 g/d)  and lowered the rate of diarrhea by 

50 %(95). This was due to optimal modulation of intestinal microbiota, particularly a 

reduction in E. coli populations, which improved animal immune system functioning.  
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Encapsulation has also been used with other molecules with efficient results. For 

instance, encapsulating zinc (100 ppm) in a 10 % lipid covering helps to mitigate the 

symptoms of colibacillosis in weaned pigs(96). Protecting probiotic cultures by 

encapsulation is known to improve nutrient digestibility and absorption, improve 

immune system function and prevent infections in both ruminant and monogastric 

species(97,98,99). Design of HA encapsulation systems is likely to prove a valuable 

technique in administering these compounds in animals and thus clarifying their route 

of action and their effects. 

 

 

Table 1: Pharmacodynamics of hydroxycinnamic acids in fattening animals and in vitro 

tests 

Species Additive Site of action Response Author 

Heifers Ferulic acid (100 

mg and 500 mg) 

Plasma Increase in the 

concentration of 

prolactin and 

growth hormone 

(44) 

Ruminant 0.1%, 0.2% of p-

coumaric, ferulic 

and synaptic acid 

Rumen The cellulolytic 

population in 

rumen is not 

modified; only p-

coumaric acid 

presents a 

reduction of 

bacteria 

responsible for 

fiber degradation 

(55) 

Pigs Ferulic acid (100 

mg/kg  feed) 

Plasma Increase of 

antioxidant 

enzymes GPx11 

and NFE2L2-

ARE2, and 

reduction of 

malonaldehyde 

concentration in 

blood 

(40) 

Pigs Ferulic acid (150 

mg/kg) 

Ear Increase in the 

synthesis of the 

hemo-oxygenase-1 

enzyme and free 

radicals reduction 

(101) 
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Pigs Plant extracts 

including 

hydroxycinnamic 

acids 

Plasma Increase Insulinic 

Growth Factor-1 

(IGF-1) 

(102) 

In vitro Cinnamic acid Adipocytes Activation of 

AMPk3, 

responsible for the 

activation of 

lipolytic and 

lipogenic enzymes 

in the cell 

(45) 

1 GPx1= Glutathione peroxidase-1; 2 NFE2L2-ARE= nuclear factor, erythroid 2 like 2.3AMPk= AMP-

activated protein kinase. 

 

 

Pharmacodynamic of hydroxycinnamic acids in growing animals 

 

 

Pharmacodynamics is the study of a compound’s action at specific sites and different 

levels (e.g. sub-molecular, molecular, cellular, tissue, organ or organism) using in vivo 

and/or in vitro models, and different techniques and instruments to identify its effective 

action in the organism(100). Hydroxycinnamic acids employ different mechanisms and 

cause modifications at various biological levels which can be translated into benefits for 

the organism such as better growth performance or maintenance of oxidative status. 

However, what evidence exists for their pharmacodynamics is inconclusive and for 

many it is non-existent.  

Very few reports are currently available on HA pharmacodynamics in growing animals 

aimed at understanding their growth promoter effect. As an additive in diets for cattle 

FA has exhibited interesting effects in vitro and in vivo, be it in a pure form or as a diet 

ingredient(14,81,92). In vivo, FA has been reported to affect enzyme and hormone profiles 

in both ruminants and pigs (Table 1)(44,72,73). 

One study of FA supplementation in cows found an increase in growth hormone and 

serum prolactin concentrations, suggesting possible alteration of the pituitary gland and 

consequently greater muscle protein deposition(44). An evaluation of changes in rumen 

microbial populations in response to 0.1 % and 0.2 % concentrations of ferulic acid, 

sinapic acid and p-coumaric acid found ferulic and sinapic acid to have little effect on 

the cellulolytic bacteria responsible for fiber degradation, indicating these acids did not 

limit bacterial viability and maintained normal fiber degradation levels(55). However, p-
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coumaric acid exhibited a pronounced ability to traverse the cell wall of cellulolytic 

bacteria and protozoans, exercising an antimicrobial effect that limited nutrient 

digestibility and lowered microbial protein concentration. 

When FA was supplemented in finishing pigs it increased activity of the antioxidant 

enzymes GPX1 (glutathion peroxidase 1) and NFE2L2 (nuclear factor [erythroid-

derived 2]-like 2)-ARE, but without significant changes in productive performance and 

carcass yields(40). A characteristic effect of synthetic β-adrenergic agonist compounds is 

reduction of dorsal fat deposition. In a recent study(43), FA supplementation in finishing 

pigs caused a similar effect, reduction of dorsal fat, possibly due to stimulation of 

hormone-sensitive lipase (not evaluated), which is responsible for fatty acids 

degradation and redirection of the energy from fat to muscle deposition. A 

neuroprotective effect has been reported with supplementation of FA in pigs, 

attributable to its ability to eliminate free radicals and regulate the cytoprotective 

enzyme heme oxygenase-1 (HO-1) in confined animals subjected to constant noise(101). 

Overall this literature review highlights the limited extent of research on the 

pharmacodynamics of HA in growing livestock. Most studies have been done with rats, 

and much more data is needed on the direct effects of HA in ruminants and monogastric 

species to better understand their growth promoting mechanisms. 

 

 

Conclusions and implications 

 

 

Use of hydroxycinnamic acids in animal diets is not currently common practice. 

However, they hold promise since their application is known to result in positive 

changes in animal growth and meat quality. Very little research is yet available on the 

metabolism of hydroxycinnamic acids when supplemented in animal diets. Future use of 

these compounds depends on studying these beneficial effects and the metabolic 

pathways activating or inhibiting them. Additional variables also need study such as 

toxicity, allergic effects, antioxidants in meat and production costs. Some research has 

been done on the pharmacokinetics and biotransformation of isolated hydroxycinnamic 

acids, mainly in rats or in vitro models. Very little information is available on p-

coumaric acid, chlorogenic acid and sinapic acid in animal models, and some reports 

suggest they have negative effects on growth. Growth performance tests in various 

animal models using low doses of hydroxycinnamic acids such as ferulic acid could 

help to determine if these effects are general. Overall, more accurate and comprehensive 

research is needed on the action of hydroxycinnamic acids in the animal production 

chain. 
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