Yield of forage, grain and biomass in eight hybrids of maize with different sowing dates and environmental conditions

Ulises Santiago López, César A. Rosales Nieto, Elizabeth Santiago López, Norma Santiago López, Pablo Preciado Rangel, Arturo Palmo Gil, Daniel Real

Resumen


The aim was to evaluate yield of forage, grain and biomass and fibre content of eight hybrids of maize (Rio-Grande, Arrayan, Genex 778, Narro 2010, Advance 2203, DAS 2358, P4082W and HT9150W) during two sowing seasons (spring/summer) for two consecutive years at La Laguna in Torreon, Mexico. Once the grain progression of the kernel milk line was ⅓, green forage yield (GFY), dry matter (DM), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined. When the corncobs were fully mature, grain yield (GY) and biomass production (TBP) were determined. Weather conditions were recorded during the experiment. The results indicated that maximum temperature was higher and rainfall lower in the summer sowing and second year. Spring sowing had significantly higher yields of GFY, DM, GY and TBP compared to summer sowing. The first year of study showed significantly higher yields regarding GFY, GY and TBP, but FDN, FDA, DM content compared to the second year. The best hybrid for GFY and DM was Rio-Grande; for FDN and FDA was Advance 2203; for GY was HT9150W and finally for TBP was Arrayan. Regardless of the hybrid used and the sowing season, production of maize depended on external factors such as maximum temperature and rainfall; therefore, producers need to consider sowing in spring to avoid the negative effect of high temperatures on plant development.


Palabras clave


Zea mays L.; Sowing season; Hybrid; Yield.

Texto completo:

PDF (English)

Referencias


Shiferaw B, Prasanna BM, Hellin J, Bänziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 2011;3:307-327.

Ruiz CJA, Durán PN, Sánchez GJJ, Ron PJ, González Eguiarte DR, Holland JB, Medina García G. Climatic adaptation and ecological descriptors of 42 mexican maize races. Crop Sci 2008;48:1502-1512.

Bellon MR, Hodson D, Hellin J. Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. PNAS 2011;108:13432-13437.

Zhou B, Yue Y, Sun X, Wang X, Wang Z, Ma W, Zhao M. Maize grain yield and dry matter production responses to variations in weather conditions. Agron J 2016;108:196-204.

Cox WJ, Cherney JH. Timing corn forage harvest for bunker silos. Agron J 2005;97:142-146.

Dhugga KS. Maize biomass yield and composition for biofuels. Crop Sci 2007;47:2211-2227.

Persson T, Garcia Garcia A, Paz J, Jones J, Hoogenboom G. Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. Agric Syst 2009;100:11-21.

Major J, Rondon M, Molina D, Riha SJ, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010;333:117-128.

Irlbeck NA, Russell JR, Hallauer AR, Buxton DR. Nutritive value and ensiling characteristics of maize stover as influenced by hybrid maturity and generation, plant density and harvest date. Anim Feed Sci Technol 1993;41:51-64.

Kim JD, Kwon CH, Kim DA. Yield and quality of silage corn as affected by hybrid maturity, sown date and harvest stage. Asian Austral J Anim 2001;14:1705-1711.

Stuber CW, Edwards MD, Wendel JF. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 1987;27:639-648.

D’Andrea KE, Piedra CV, Mandolino CI, Bender R, Cerri AM, Cirilo AG, Otegui ME. Contribution of reserves to kernel weight and grain yield determination in maize: phenotypic and genotypic variation. Crop Sci 2016;56:697-706.

Andrieu J, Demarquilly C, Dardenne P, Barrière Y, Lila M, Maupetit P, Rivière F, et al. Composition and nutritive value of whole maize plants fed fresh to sheep. I. Factors of variation. Ann Zootech 1993;42:221-249.

Núñez HG, Contreras E, Faz R. Características agronómicas y químicas importantes en genotipos de maíz para forraje con alto valor energético. Téc Pecu Méx 2003;41:37-48.

SIAP. 2011. Servicio de Información Agroalimentaria y Pesquera. Inicio/producción anual/resumen nacional por cultivo. http://www.siap.gob.mx/index.php?option=com_ wrapper&view=wrapper&Itemid=346. Consultado 2 Ago, 2011.

González CF, Peña A, Núñez G, Jiménez CA. Efecto de la densidad y altura de corte en el rendimiento y calidad del forraje de maíz. Rev Fito Méx 2005;28:393-397.

Argillier O, Méchin V, Barriere Y. Inbred line evaluation and breeding for digestibility-related traits in forage maize. Crop Sci 2000;40:1596-1600.

Núñez HG, Faz C, Tovar G, Zavala G. Genotipos de maíz para la producción de forraje con alta digestibilidad en el norte de México. Téc Pecu Méx 2001;39:77-88.

Ball BC, Bingham I, Rees RM, Watson CA, Litterick A. The role of crop rotations in determining soil structure and crop growth conditions. Can J Soil Sci 2005;85:557-577.

Sangoi L. Understanding plant density effects on maize growth and development: an important issue to maximize grain yield. Ciencia Rural 2001;31:159-168.

Crookston RK, Kurle JE. Using the kernel milk line to determine when to harvest corn for silage. J Prod Agric 1988;1:293-295.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-3597.

SAS Institute. 2010. SAS/Stat User’s guide, Version 9.3. SAS Institute Inc., Cary, NC, USA.

Reta SDG, Gaytán A, Carrillo JS. Respuesta del maíz para ensilaje a métodos de siembra y densidades de población. Rev Fito Méx 2000;23:37-48.

Peña RA, González C, Núñez G, Tovar G, Preciado O, Terrón I, Gómez M, et al. Estabilidad del rendimiento y calidad forrajera de genotipos de maíz. Rev Fito Mex 2006;29:109-114.

Crafts-Brandner SJ, Salvucci ME. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology 2002;129:1773-1780.

Sinsawat V, Leipner J, Stamp P, Fracheboud Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 2004;52:123-129.

Lobell DB, Banziger M, Magorokosho C, Vivek B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change 2011;1:42-45.

Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and climate extremes 2015;10(Part A):4-10.

Filya I. Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Anim Feed Sci Technol 2004;116:141-150.

Jensen C,Weisbjerg MR, Nørgaard P, Hvelplund T. Effect of maize silage maturity on site of starch and NDF digestion in lactating dairy cows. Anim Feed Sci Technol 2005;118:279-294.

Neylon JM, Kung Jr L. Effects of cutting height and maturity on the nutritive value of corn silage for lactating cows. J Dairy Sci 2003;86:2163-2169.

Bernard JK, West JW, Trammell DS, Cross GH. Influence of corn variety and cutting height on nutritive value of silage fed to lactating dairy cows. J Dairy Sci 2004;87:2172-2176.

Freeman KW, Girma K, Arnall DB, Mullen RW, Martin KL, Teal RK, Raun WR. By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron J 2007;99:530-536.

Di Marco ON, Aello MS, Nomdedeu M, Van Houtte S. Effect of maize crop maturity on silage chemical composition and digestibility (in vivo, in situ and in vitro). Anim Feed Sci Technol 2002;99:37-43.

Qiu X, Eastridge ML, Wang Z. Effects of corn silage hybrid and dietary concentration of forage NDF on digestibility and performance by dairy cows. J Dairy Sci 2003;86:3667-3674.

Li X, Takahashi T, Suzuki N, Kaiser HM. The impact of climate change on maize yields in the United States and China. Agric Syst 2011;104:348-353.

Maddonni GA, Otegui ME, Bonhomme R. Grain yield components in maize: II. Postsilking growth and kernel weight. Field Crop Res 1998;56:257-264.

Mayer LI, Rattalino Edreira JI, Maddonni GA. Oil yield components of maize crops exposed to heat stress during early and late grain-filling stages. Crop Sci 2014;54:2236-2250.

Badu-Apraku B, Hunter RB, Tollenaar M. Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Can J Plant Sci 1983;63:357-363.

Muchow RC. Effect of high temperature on grain-growth in field-grown maize. Field Crops Res 1990;23:145-158.

Wilhelm WW, Wortmann CS. Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature. Agron J 2004;96:425-432.

Rattalino Edreira JI, Mayer LI, Otegui ME. Heat stress in temperate and tropical maize hybrids: Kernel growth, water relations and assimilate availability for grain filling. Field Crop Res 2014;166:162-172.

Wilhelm EP, Mullen RE, Keeling PL, Singletary GW. Heat stress during grain filling in maize: Effects on kernel growth and metabolism. Crop Sci 1999;39:1733-1741.

Cicchino M, Edreira JIR, Otegui ME. Heat stress during late vegetative growth of maize: Effects on phenology and assessment of optimum temperature. Crop Sci 2010;50:1431-1437.

Cicchino M, Edreira JIR, Uribelarrea M, Otegui ME. Heat stress in field-grown maize: Response of physiological determinants of grain yield. Crop Sci 2010;50:1438-1448.

López SJA, Ortiz CJ, Mendoza CM. Componentes del crecimiento de grano de líneas de maíz de peso contrastante de grano. Rev Fito Mex 2000;23:141-151.




DOI: https://doi.org/10.22319/rmcp.v9i1.4403

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2017

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

  

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias
CENID-Microbiología Animal, Km. 15.5 Carretera México-Toluca, Colonia Palo Alto
México, D.F. C.P. 05110
Tel. 01 (55) 38718700 Exts. 80306 - 80316 
 


Licencia Creative Commons
Revista Mexicana de Ciencias Pecuarias por
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional