Síndrome de depresión de grasa láctea provocado por el isómero trans-10, cis-12 del ácido linoleico conjugado en vacas lactantes. Una revisión

Lorenzo Danilo Granados-Rivera, Omar Hernández-Mendo

Resumen


El objetivo de esta revisión bibliográfica fue discutir el efecto del isómero trans-10, cis-12 del ácido linoleico conjugado (ALC) en el síndrome de depresión de grasa láctea (SDGL) en vacas, caracterizado por reducir hasta en 50.0 % la concentración de grasa en leche. Este síndrome causa menor rendimiento de derivados lácteos, por lo que el productor recibe menor pago por la leche. Diversas teorías explican la presencia del SDGL, siendo la biohidrogenación la mejor sustentada, donde establece que baja proporción de fibra detergente neutro o alta inclusión de ácidos grasos (AG) insaturados en la dieta de vacas lactantes propician alteraciones en la biohidrogenación ruminal. Ello da origen a mayor producción de AG trans, que inhiben enzimas necesarias para la síntesis de AG en glándula mamaria. El isómero trans-10, cis-12 ALC es uno de los principales responsables de la presencia del SDGL, cuyo mecanismo de acción no es claro aún, pero se sabe que dicho isómero suprime factores de transcripción que regulan la síntesis de grasa en leche.


Palabras clave


Ácidos grasos; Síntesis de grasa; Biohidrogenación; Industria lechera.

Texto completo:

PDF

Referencias


Jensen RG. The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci 2002;85:295–350.

Moore JH, Christie WW. Lipid metabolism in the mammary gland of ruminant animals. Prog Lipid Res 1979;17:347–395.

Bauman DE, Davis CL. Regulation of lipid metabolism. In: Digestion and metabolism in the ruminant. McDonald IW, Warner AIC editors. Armidale, Australia: Univ New Engl Publ; 1975:496–509.

Jenkins TC, McGuire MA. Major advances in nutrition: impact on milk composition. J Dairy Sci 2006;89:1302-1310.

Jenkins TC, Klein CM, Mechor GD. Managing milk fat depression: Interactions of ionophores, fat supplements, and other risk factors. Proc 20th Ann Florida Ruminant Nutr Symp. Gainesville, Florida, 2009.

Jenkins TC, Harvatine KJ. Lipids feeding and milk fat depression. Vet Clin Food Anim 2014;623-642.

Harvatine KJ, Boisclair YR, Bauman DE. Recent advances in the regulation of milk fat synthesis. Animal 2009;3:40–54.

Bauman DE, Harvatine KJ, Lock AL. Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annu Rev Nutr 2011;31:299-319.

Bauman DE, Griinari JM. Nutritional regulation of milk fat synthesis. Annu Rev Nutr 2003;23:203–227.

Bauman DE, Perfield JWII, Harvatine KJ, Baumgard LH. Regulation of fat synthesis by conjugated linoleic acid: lactation and the ruminant model. J Nutr 2008;138:403–409.

Kepler CR, Hirons KP, McNeill JJ, Tove SB. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J Biol Chem 1966;241:1350–1354.

Kim YJ, Liu RH, Rychlik JL, Russell JB. The enrichment of a ruminal bacterium (Megasphaera elsdenii YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J Appl Microbiol 2002;92:976–982.

Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KV, Bauman DE. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta9-desaturase. J Nutr 2000;130:2285–2291.

Park Y, Pariza MW. Lipoxygenase inhibitors inhibit heparin-releasable lipoprotein lipase activity in 3T3-L1adipocytes and enhance body fat reduction in mice by conjugated linoleic acid. Biochim Biophys Acta 2001;1534:27–33.

Pariza MW. Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 2004;79:1132S–1136S.

Bauman DE, Mather IH, Wall RJ, Lock AL. Major advances associated with the biosynthesis of milk. J Dairy Sci 2006;89:1235–1243.

Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 2008;86:397-412.

Lourenço ME, Ramos-Morales A, Wallace RJ. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 2010;4:1008-1023.

Palmquist DL, Mattos W. Turnover of lipoproteins and transfer to milk fat of dietary (1-carbon-14) linoleic acid in lactating cows. J Dairy Sci 1978;61:561-565.

Bergman EN, Wolff JE. Metabolism of volatile fatty acids by liver and portal-drained viscera in sheep. Am J Physiol 1971;221:586-592.

Costa ND, McIntosh GH, Snoswell AM. Production of endogenous acetate by the liver in lactating ewes. Aust J Biol Sci 1976;29:33-42.

Annison EF, Linzell JL. The oxidation and utilization of glucose and acetate by the mammary gland of the goat in relation to their over-all metabolism and milk formation. J Physiol 1964;175:372-385.

Palmquist DL, Davis CL, Brown RE, Sachan DS. Availability and metabolism of various substrates in ruminants. V. Entry rate into the body and incorporation into milk fat of D(-)β-hydroxybutyrate. J Dairy Sci 1969;52:633–638.

Bauman DE, Davis CL. Biosynthesis of milk fat. In: Lactation: A comprehensive treatise. Larson BL, Smith VR editors. New York: Academic Press; 1974(2):31-75.

Ha J, Kim K. Inhibition of fatty acid synthesis by expression of an acetyl-CoA carboxylase-specific ribozyme gene. Proc Natl Acad Sci 1994;91:9951-9955.

Knudsen J, Grunnet I. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Biochem J 1982; 202:139-143.

Bauman DE, Brown RE, Davis CL. Pathway of fatty acid synthesis and reducing equivalent generation in mammary gland of rat, sow and cow. Arch Biochem Biophys 1970;140:237.

Nafikov RA, Beitz DC. Carbohydrate and lipid metabolism in farm animals. J Nutr 2007;137:702-705.

Moore JH, Steele W. Dietary fat and milk fat secretion in cow. Proc Nutr Soc 1968;27:66–70.

Bauman DE, Griinari JM. Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livest Prod Sci 2001;70:15–29.

Collomb M, Schmid A, Sieber R, Wechsler D, Ryhänen EL. Conjugated linoleic acids in milk fat: Variation and physiological effects. Int Dairy J 2006;16:1347-1361.

Baumgard LH, Corl BA, Dwyer DA, Saebo A, Bauman DE. Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. Am J Physiol Regul Integr Comp Physiol 2000;278:R179–184.

Shaw JC, Robinson RR, Senger ME. Production of low-fat milk I. Effect of quality and quantity of concentrate on the volatile fatty acids of the rumen and on the composition of the milk. J Nutr 1959;69:244-235.

Kim EJ, Huws SA, Lee MRF, Wood JD, Muetzel SM, Wallace RJ, Scollan ND. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J Nutr 2008;138:889–896.

Bines JA, Hart IC. Metabolic limits to milk production, especially roles of growth hormone and insulin. J Dairy Sci 1982;65:1375-1389.

Griinari JM, Dwyer DA, McGuire MA, Bauman DE, Palmquist DL, Nurmela KVV. Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J Dairy Sci 1998;81:1251–1261.

de Veth MJ, Griinari JM, Pfeiffer AM, Bauman DE. Effect of CLA on milk fat synthesis in dairy cows: comparison of inhibition by methyl esters and free fatty acids, and relationships among studies. Lipids 2004;39:365–372.

Shingfield KJ, Griinari JM. Role of biohydrogenation intermediates in milk fat depression. Eur J Lipid Sci Technol 2007;109:799-816.

Glasser F, Ferlay A, Doreau M, Loor JJ. t10, c12–18:2-Induced milk fat depression is less pronounced in cows fed high-concentrate diets. Lipids 2010;45:877–887.

Ramírez-Mella M, Hernández-Mendo O, Ramírez-Bribiesca EJ, Améndola-Massiotti RD, Crosby-Galván MM, Burgueño-Ferreira JA. Effect of vitamin E on milk composition of grazing dairy cows supplemented with microencapsulated conjugated linoleic acid. Trop Anim Health Pro 2013;45:1783–1788.

Pappritz J, Meyer U, Kramer R, Weber EM, Jahreis G, Rehage J, Flachowsky G, Danicke S. Effects of long-term supplementation of dairy cow diets with rumen-protected conjugated linoleic acids (CLA) on performance, metabolic parameters and fatty acid profile in milk fat. Arch Anim Nutr 2012;65:89–107.

Bichi E, Hervás G, Toral PG, Loor JJ, Frutos P. Milk fat depression induced by dietary marine algae in dairy ewes: Persistency of milk fatty acid composition and animal performance responses. J Dairy Sci 2013;96:524-532.

Perfield JW, Lock AL, Griinari JM, Saebo A, Delmonte P, Dwyer DA, Bauman DE. Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. J Dairy Sci 2007;90:2211-2218.

Baumgard LH, Matitashvili E, Corl B, Dwyer D, Bauman D. Trans-10, cis-12 Conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows. J Dairy Sci 2002;85:2155–2163.

Harvatine KJ, Bauman DE. SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J Nutr 2006;136:2468–2474.

Anderson GW, Zhu Q, Metkowski J, Stack MJ, Gopinath S, Mariash CN. The Thrsp null mouse and diet-induced obesity. Mol Cell Endocrinol 2009;302:99–107.

Bernard L, Leroux C, Chilliard Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv Exp Med Biol 2008;606:67–108.

Yu Y, Correll PH, Heuvel JP. Conjugated linoleic decreases production of pro-inflammatory products in macrophages: evidence for a PPARα-dependent mechanism. Biochim Biophys Acta 2002;158:88-99.

Peters JM, Park Y, Gonzalez FJ, Pariza MW. Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor α-null mice. Biochim Biophys Acta 2001;233–242.

Gimble JM, Chen C, Pighetti GM, Hitt DC. Adipocyte biology of the bone. In: Ntambi JM, editor. Adipocyte biology and hormone signaling. Washington DC: IOS Press; 2000:231–238.

Pariza MW, Park Y, Cook ME. The biologicallyactive isomers of conjugated linoleic acid. Prog Lipid Res 2001;40:283-298.

Toral PG, Hervás G, Carreño D, Frutos P. Does supplemental 18:0 alleviate fish oil-induced milk fat depression in dairy ewes? J Dairy Sci 2016;99:1133–1144.

Harvatine KJ. Managing milk fat depression. Florida Ruminant Nutr Symp. 27 th Ann Meet. Gainesville, Florida; 2016:64-77.

Manchester, AC, Blayney DP. Milk pricing in the United States. Agriculture Information Bulletin No. 761, Market and Trade Economics Division, Economic Research Service, U.S.D.A. 2016. http://www.ers.usda.gov/publications/aib761/ aib761fm. Accessed Sep 26, 2016.

Erdman RA. Feeding for and the cost of producing milk components: milk fat. Proc 6th Mid-Atlantic Nutr Conf. Timonium MD; 2008:113-121.

Secretaría de Economía. “Análisis del sector lácteo en México” 2012. http://www.economia.gob.mx/files/comunidad_negocios/industria_comercio/informacionSetorial/analisis_sector_lacteo.pdf. Consultado Oct 17, 2016.

CANILEC. El libro blanco de la leche y los productos lácteos. Cámara Nacional de Industriales de la Leche. México: Editorial Litho Offset; 2011.

Fekadu B, Soryal K, Zeng S, VanHekken D, Bah B, Villaquiran M. Changes in goat milk composition during lactation and their effect on yield and quality of hard and semi-hard cheese. Small Ruminant Res 2005;59:55-60.

Fox PF, Timothy P, Guinee TP, Cogan M, Paul L, Mcsweeney H. Fundamentals of cheese science. Second ed. USA: Springer New York; 2016.

Schiavon S, Cesaro G, Cecchinato A, Cipolat-Gotet C, Tagliapietra F, Bittante G. The influence of dietary nitrogen reduction and conjugated linoleic acid supply to dairy cows on fatty acids in milk and their transfer to ripened cheese. J Dairy Sci 2016;99:1–20.

Chen SX, Rovai AL, Lock DE, Bauman TA, Gipson FZ, Zeng SS. Short communication: Effects of milk fat depression induced by a dietary supplement containing trans-10, cis-12 conjugated linoleic acid on properties of semi-hard goat cheese. J Dairy Sci 2009;92:2534–2538.

Pottier J, Focant M, Debier C, Buysser De, Goffe G, Mignolet C, Friodmont E, Larondelle Y. Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. J Dairy Sci 2006;89:685–692.

Kadegowda AKG, Piperova LS, Delmonte P, Erdman RA. Abomasal infusion of butterfat increases milk fat in lactating dairy cows. J Dairy Sci 2008;91:2370–2379.

Vyas D, Moallem U, Teter BB, Fardin-Kia ARK, Erdman RA. Milk fat responses to butterfat infusion during conjugated linoleic acid-induced milk fat depression in lactating dairy cows. J Dairy Sci 2013;96:2387–2399.

Loften RJ, Lin GJ, Drackley KJ, Jenkins CT, Soderholm GC, Kertz FA. Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. J Dairy Sci 2014;97:4661-4674.

Hansen HO, Knudsen J. Effect of exogenous long-chain fatty acids on individual fatty acid synthesis by dispersed ruminant mammary gland cells. J Dairy Sci 1987;70:1350-1354.




DOI: https://doi.org/10.22319/rmcp.v9i3.4337

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2018

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

  

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias
CENID-Microbiología Animal, Km. 15.5 Carretera México-Toluca, Colonia Palo Alto
México, D.F. C.P. 05110
Tel. 01 (55) 38718700 Exts. 80306 - 80316 
 


Licencia Creative Commons
Revista Mexicana de Ciencias Pecuarias por
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional