Accuracy of genomic values predicted using deregressed predicted breeding values as response variables

Agustín Ruíz-Flores, José Guadalupe García-Muñiz, Joel Domínguez-Viveros, Rufino López-Ordaz, Fernanda Ramírez-Flores


Highly accurate predicted genetic values must be obtained at an early age to promote rapid genetic progress. The objectives of this study were to compare accuracies (R2) of genomic values (GVs) and to estimate genetic correlation between true genetic values and genomic values obtained using predicted breeding values (EBV) and deregressed EBV (DEBV) as response variables. A first population, effective population size 800 and 100 generations, was simulated using the QMSim program to generate linkage disequilibrium. Thereafter, 20 males and 200 females were used to generate a second 14-generation population, with 6,400 individuals per generation and its corresponding phenotype and genotype in SNP terms. Generations 7 to 14 of the second population were used in several combinations as training (PEn) and evaluation (PEv) subpopulations. GVs, their accuracies, and genetic correlations were obtained using the GenSel and ASREML programs. When PEn was the largest, the mean R2 of GV was the highest, 0.77 ± 0.01. The closer PEn was to PEv, the higher the R2, and correspondingly, the lower the predicted error variance. The trends for R2 and PEV held true for both EBV and DEBV used as response variables. Genetic correlation estimates between true genetic values and GVs varied from 0.41 to 0.53 in the two scenarios studied. They decreased when PEn and PEv were farther apart. There were only slight advantages of using DEBVs as response variables over using EBVs.

Palabras clave

Genomic evaluation; Deregressed predicted genetic value; Genomic predicted value; Accuracy; Genetic correlation.

Texto completo:

PDF (English) XML (English)


Goddard ME. Genomic selection: Prediction of accuracy and maximization of long term response. Genetica 2009;136:245-257.

Knol EF, Nielsen B, Knap PW. Genomic selection in commercial pig breeding. Anim Front 2016;6:15-22.

Meuwissen TB. Hayes B, Goddard M. Genomic selection: A paradigm shift in animal breeding. Anim Front 2016;6:6-14.

Ibanez-Escriche N, Simianer H. Animal breeding in the genomic era. Anim Front 2015;5:4-5.

Garrick DJ, Taylor JF, Fernando R. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet Sel Evol 2009;41:55-62.

Guo G, Lund MS, Zhang Y, Su G: Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables. J Anim Breed Genet 2010;127:423-432.

Ostersen T, Christensen OF, Henryon M, Nielsen B, Su G, Madsen P. Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs. Genet Sel Evol 201;43:38-43.

Ricard A, Danvy S, Legarra A. Computation of deregressed proofs for genomic selection when own phenotypes exist with an application in French show-jumping horses. J Anim Sci 2013;91:1076-1085.

Alarcón-Zúñiga B, Ramírez-Flores F, Ruíz-Flores A, Ramírez-Valverde R, Saavedra-Jiménez LA, Zepeda-Batista JL. Comparación de la exactitud de valores genómicos de animales predichos a través del análisis con dos modelos alternativos. Agrociencia 2015;49:613-622.

Sargolzaei M, Schenkel FS. QMSim: a large-scale genome simulator for livestock. Bioinformatics 2009;25:680-681.

Weller JI, Shlezinger M, Ron M. Correcting for bias in estimation of quantitative trait loci effects. Genet Sel Evol 2005;37:501-522.

Gilmour AR, Gogel, BJ, Cullis, BR, Thompson R. ASREML User Guide Release 3.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK. http://www.vsni. 2009. Consulted Jan 31, 2014.

Weber KL, Thallman RM, Keele JK, Snelling WM, Bennet GL, Smith TPL, et al. Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes. J Anim Sci 2012;94:4177-4190.

Fernando R, Garrick DJ. GenSel – user manual for a portfolio of genomic selection related analyses, create 9.1. 2009. Accessed Jan 15, 2013.

Pszczola M, Strabel T, Mulder HA, Calus MPL. Reliability of direct genomic values for animals with different relationships within and to the reference population. J Dairy Sci 2012;95:389-400.

Pszczola M, Strabel T, van Arendonk JAM, Calus MPL. The impact of genotyping different groups of animal son accuracy when moving from traditional to genomic selection J Dairy Sci 2012;95:5412-5421.

Hassani S, Saatchi M, Fernando RL, Garrick DJ. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle. Genet Sel Evol 2015;47:99-109.

Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007;177:2389-2397.

Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol 2010;52:5-16.

Saatchi M, Miraei-Ashtiani SR, Nejati Javaremi A, Moradi-Shahrebabak M, Mehrabani-Yeghaneh H. The impact of information quantity and strength of relationship between training set and validation set on accuracy of genomic estimated breeding values. Afr J Biotech 2010;9:438-442.

Saatchi M, McClure MC, McKay SD, Rolf MM, Kim J, Decker JE, et al. Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genet Sel Evol 2011;43:40-55.

Clark SA, Hickey JM, Daetwyler HD, van der Werf JHJ. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol 2012;44:4-12.

Saatchi M, Ward J, Garrick DJ. Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations. J Anim Sci 2013;91:1538-1551.

Kennedy BW. Bias and mean square error from ignoring genetic groups in mixed model sire evaluation. J Dairy Sci 1981;64:689-697.

Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001;157:1819-1829.

Calus, MPL, Veerkamp RF. Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. J Anim Breed Genet 2007;124:362-368.

Muir WM. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet 2007;124:342-355.

Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of genetic architecture on genome-wide evaluation methods. Genetics 2010;185:1021-1031.

Daetwyler HD, Kemper KE, van der Werf JHJ. Hayes BJ. Components of the accuracy of genomic prediction in a multi-breed sheep population. J Anim Sci 2012;90:3375-3384.

Pszczola M, Mulder HA, Calus MPL. Effect of enlarging the reference population with (un)genotyped animals on the accuracy of genomic selection in dairy cattle. J Dairy Sci 2011;94:431-441.

Saatchi M, Schnabel RD, Rolf MM, Taylor JF, Garrick DJ. Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genet Sel Evol 2012;44:38.

Spangler ML, Bertrand JK, Rekaya R. Combining genetic test information and correlated phenotypic records for breeding value estimation. J Anim Sci 2007;85:641-649.


Enlaces refback

  • No hay ningún enlace refback.

Copyright (c) 2017

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.


Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias
CENID-Microbiología Animal, Km. 15.5 Carretera México-Toluca, Colonia Palo Alto
México, D.F. C.P. 05110
Tel. 01 (55) 38718700 Exts. 80306 - 80316 

Licencia Creative Commons
Revista Mexicana de Ciencias Pecuarias por
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional